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Factores genéticos implicados en la regulación del 
trastorno por consumo de alcohol.

Genetic factors involved in the regulation of alcohol use disorder.

María Valentina Porto-Ávila1,a

RESUMEN
Introducción: El trastorno por consumo de alcohol (AUD, por sus siglas en inglés) continúa siendo un 
contribuyente significativo a la carga global de enfermedad, ya que se asocia con un mayor riesgo de mortalidad 
y con el desarrollo prematuro de enfermedades no transmisibles. Dada su elevada carga genética, resulta relevante 
analizar los factores genéticos implicados en su desarrollo y regulación. Objetivo: Analizar algunos de los factores 
genéticos involucrados en el trastorno por consumo de alcohol. Materiales y métodos: Se realizó una revisión 
de la literatura en las bases de datos Medline, Google Scholar y Scopus con el fin de recopilar información 
actualizada sobre factores genéticos asociados a la regulación del trastorno por consumo de alcohol. Se utilizaron 
los términos DeCS trastorno por consumo de alcohol, polimorfismo genético y metilación de ADN, junto con 
sus equivalentes MeSH, combinados mediante los operadores booleanos AND y OR. Se revisaron 80 artículos 
publicados entre 2020 y 2025, de los cuales 66 cumplieron los criterios de inclusión y exclusión establecidos. 
Se incluyeron estudios originales y, en menor proporción, artículos de revisión que abordaran factores genéticos 
relacionados con la expresión o regulación del AUD. Se excluyeron estudios no disponibles en español o inglés y 
aquellos realizados en población pediátrica. Los artículos seleccionados incluyeron población mayor de 18 años 
y procedencia global. Resultados: Se identificaron diversos genes involucrados en el trastorno por consumo de 
alcohol, incluyendo marcadores genéticos como CLEC7A en células de la microglía, GMe como marcador de 
cambios en la metilación del ADN, evidenciando hipometilación asociada al consumo de etanol, y alteraciones en 
el alelo T de la variante rs4646543 del gen ALDH1A1. Conclusión: El trastorno por consumo de alcohol presenta 
una alta carga genética, lo que abre posibilidades para el desarrollo de estrategias terapéuticas orientadas a la 
prevención y el tratamiento de esta condición.

Palabras clave: Trastorno del consumo de alcohol, polimorfismo genético, susceptibilidad genética, metilación 
de ADN.

ABSTRACT
Introduction: Alcohol use disorder (AUD) remains a significant contributor to the global burden of disease, as it 
is associated with an increased risk of mortality and the premature development of non-communicable diseases. 
Given its high genetic burden, it is important to analyze the genetic factors involved in its development and 
regulation. Objective: To analyze some of the genetic factors involved in alcohol use disorder. Materials and 
methods: A literature review was conducted using the Medline, Google Scholar, and Scopus databases to collect 
up-to-date information on genetic factors associated with the regulation of alcohol use disorder. The DeCS terms 
alcohol use disorder, genetic polymorphism, and DNA methylation, along with their MeSH equivalents, were used 
and combined with the Boolean operators AND and OR. A total of 80 articles published between 2020 and 2025 
were reviewed, of which 66 met the established inclusion and exclusion criteria. Original research studies and, 
to a lesser extent, review articles addressing genetic factors related to the expression or regulation of AUD were 
included. Studies not available in Spanish or English and those involving pediatric populations were excluded. 
The selected articles included global populations aged over 18 years and were published within the 2020-2025 
period. Results: Several genes involved in alcohol use disorder were identified, including genetic markers such 
as CLEC7A in microglial cells, GMe as a marker of DNA methylation changes, which showed hypomethylation 
associated with ethanol consumption, and alterations in the T allele of the rs4646543 variant of the ALDH1A1 
gene. Conclusion: Alcohol use disorder has a high genetic burden, which opens possibilities for the development 
of therapeutic strategies aimed at the prevention and treatment of this disorder.
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INTRODUCCIÓN

El trastorno por consumo de alcohol (AUD, por sus siglas en 
inglés) continúa siendo un importante contribuyente a la car-
ga global de enfermedad, ya que representa un riesgo elevado 
de mortalidad y del desarrollo prematuro de enfermedades no 
transmisibles, como alteraciones hepáticas, cardíacas y distintos 
tipos de cáncer, así como trastornos de salud mental y del com-
portamiento, entre ellos la depresión, la ansiedad y los propios 
trastornos por consumo de bebidas alcohólicas.1,2

 
El AUD es altamente prevalente en países como Estados Unidos, 
donde la prevalencia a 12 meses del trastorno se estima en un 
4,6% en adolescentes entre 12 y 17 años y en un 8,5% en adul-
tos mayores de 18 años. Las tasas registradas son más altas en 
hombres adultos (12,4%) que en mujeres (4,9%).3 Además, se 
han observado múltiples consecuencias sociales y mentales ad-
versas en los familiares de personas con AUD, especialmente en 
los niños, lo que puede ejercer a corto, mediano o largo plazo un 
efecto negativo sobre la salud de las futuras generaciones, como 
ocurre en los trastornos del espectro alcohólico fetal.4

 
 
La etiología heterogénea del AUD se refleja tanto a nivel fenotípi-
co como genómico y ha sido ampliamente estudiada en los últimos 
años, abarcando los factores que influyen en esta heterogeneidad 
según su capacidad para generar cambios positivos o negativos 
en el desarrollo de la fisiopatología del trastorno.5 Los factores 
genéticos tienen un impacto significativo, con una heredabilidad 
aproximada del 50%-60% en variables como la frecuencia de 
consumo de alcohol, la cantidad ingerida, el número máximo 
de bebidas alcohólicas consumidas en 24 horas, los problemas 
relacionados con el alcohol y los diagnósticos de AUD a lo largo 
de la vida.6-8 En menor medida, se consideran los efectos de los 
polimorfismos de nucleótido único (SNP) en el ADN, así como 
los rasgos neurobiológicos intermedios, como la personalidad, la 
estructura cerebral y la sensibilidad a la recompensa, los cuales 
se asocian de manera modesta pero consistente con el AUD.9,10

 

Debido a las características descritas del trastorno, los nuevos 
objetivos terapéuticos están orientados al establecimiento de 
medidas de prevención e intervención personalizadas mediante 
el uso de una prueba genética denominada puntuación de riesgo 
poligénico (PRS), definida como la suma ponderada de los alelos 
de riesgo de variantes de un solo nucleótido (SNV) a lo largo del 
genoma. Esta herramienta ha demostrado ser una opción prome-
tedora para la evaluación del riesgo de enfermedad.4,11-18

 
DIAGNÓSTICO DEL TRASTORNO POR CONSUMO DE 
ALCOHOL
 
El AUD se define como un patrón problemático de consumo de 

alcohol que provoca deterioro o malestar clínicamente significa-
tivo. Se manifiesta mediante conductas de consumo recurrente, 
ansias, recaídas, abstinencia —caracterizada por síntomas que 
se desarrollan entre 4 y 12 horas después de la reducción del 
consumo tras una ingesta prolongada e intensa— y tolerancia al 
alcohol. Estas manifestaciones derivan en el incumplimiento de 
los deberes fundamentales del individuo en el trabajo, la escuela 
o el hogar. En algunos casos, dichos incumplimientos se reflejan 
en un rendimiento académico y laboral deteriorado, ya sea por 
los efectos posteriores al consumo o por episodios de intoxica-
ción en los lugares de estudio o trabajo. De igual forma, pueden 
verse descuidados el cuidado de los hijos y las responsabilidades 
domésticas.3

 
FACTORES GENÉTICOS ASOCIADOS AL TRASTORNO 
POR CONSUMO DE ALCOHOL
 
Para establecer la relación gen-ambiente, la cual es fundamental al 
analizar un trastorno poligénico, así como la penetrancia del AUD 
en los individuos, se utiliza la puntuación de riesgo poligénico 
(PGS, por sus siglas en inglés).4 Las PGS se emplean para evaluar 
la etiología compartida entre fenotipos, analizar la utilidad clínica 
de los datos genéticos en enfermedades comunes y como parte de 
estudios experimentales, en los que, por ejemplo, se comparan 
individuos o muestras biológicas ubicadas en los extremos de la 
distribución de PGS.19

 
Este enfoque es el único que proporciona una estimación de la 
propensión genética a un rasgo a nivel individual.19 Las puntua-
ciones de riesgo poligénico se calculan sumando los alelos de 
riesgo correspondientes a un fenotipo de interés en cada individuo, 
ponderados por la estimación del tamaño del efecto obtenida de 
los estudios de asociación del genoma completo (GWAS) más 
potentes para dicho fenotipo.19 Diversos estudios han demostrado 
que es posible alcanzar un poder predictivo considerablemente 
mayor utilizando PGS en comparación con el uso de un número 
reducido de SNP con significancia a nivel genómico.20-22 

El uso de las PGS se ha aplicado para analizar la estrecha relación 
entre la PGS del AUD, el etanol y la función de la microglía, la 
cual podría influir en las funciones neuronales implicadas en el 
desarrollo del trastorno.23 La microglía actúa como un sistema 
de células presentadoras de antígenos, equipado con receptores 
fagocíticos que facilitan la captura de antígenos, los cuales se 
procesan en fagosomas y posteriormente se presentan mediante 
MHCII y moléculas coestimuladoras expresadas en la microglía.24 
Todo este proceso podría modular las respuestas inmunes dentro 
del sistema nervioso central durante el AUD. En este estudio se 
utilizaron líneas humanas de iPSC derivadas de linfocitos y células 
linfoblastoides recolectadas de ocho participantes anónimos diag-
nosticados con AUD según el Manual diagnóstico y estadístico de 
los trastornos mentales, quinta edición (DSM-V).3 Los resultados 
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evidenciaron diferencias significativas entre individuos con AUD 
y PGS alta y aquellos con PGS baja no afectados.23

En ausencia de etanol, los genes con mayor expresión en células 
microgliales de individuos con PGS alta se enriquecieron en 
vías biológicas relacionadas con la activación de receptores y 
la segregación cromosómica, mientras que aquellos con menor 
expresión se asociaron con genes vinculados a la señalización 
inmune, particularmente del complejo MHCII. Tras la exposición 
intermitente al etanol, se identificaron genes regulados positi-
vamente en individuos con PGS alta, enriquecidos en procesos 
relacionados con el ensamblaje de antígenos peptídicos con el 
complejo MHCII, el procesamiento y la presentación de antíge-
nos, así como la fagocitosis. Estos hallazgos demuestran que la 
predisposición genética se asocia con una respuesta microglial 
alterada frente al alcohol. Esto sugiere que, en pacientes con AUD, 
no solo el consumo de etanol representa un daño, sino también 
la interacción con un sistema inmunoneuronal predispuesto que 
amplifica la inflamación y la disfunción neuronal.23

 
Entre los genes regulados positivamente, se identificaron cambios 
significativos en la expresión de CLEC7A en células microglia-
les de individuos con PGS alta, tanto a nivel transcripcional 
como proteico, después de la exposición al etanol. CLEC7A es 
un receptor presente en la superficie de las células microgliales 
que desempeña un papel relevante en la respuesta inmune al 
detectar zimosano, un β-glucano fúngico, e iniciar el proceso 
fagocítico.26-28 Esta mayor expresión podría explicar el aumento 
de la actividad fagocítica observado tras la exposición al etanol.23 
Además, diversos estudios han identificado a CLEC7A como un 
gen característico de la microglía asociada a enfermedades neu-
rodegenerativas, mostrando una expresión elevada en modelos 
murinos de neurodegeneración, incluida la enfermedad de Alzhe-
imer.29-31 Por ello, estos hallazgos sugieren una posible conexión 
entre la elevada expresión de CLEC7A en individuos con PGS 
alta y la demencia relacionada con el AUD.23

 
En un estudio reciente de Yang et al, se observaron diferencias 
notables en la expresión de genes asociados con la enfermedad 
de Alzheimer humana entre ratones con esta patología y distintos 
antecedentes genéticos. Específicamente, las cepas B6.APP/PS1 
y WSB.APP/PS1 mostraron niveles más altos de expresión del 
gen CLEC7A, mientras que las cepas CAST y PWK no presen-
taron este patrón.32 Estos resultados complementan los hallazgos 
previamente descritos y respaldan la idea de que el trasfondo 
genético puede modular la función fagocítica de la microglía 
en respuesta al etanol, influyendo en la función neuronal y en la 
fisiopatología del AUD.23

 
Asimismo, se han analizado variaciones epigenéticas, como la 
metilación del ADN inducida por el alcohol. En este contexto, 
Schuch et al describen cómo los niveles de 5-metilcitosina (5-

mC), representativos de la metilación global del ADN (GMe), 
se ven influenciados por factores ambientales y hormonales, 
constituyendo un mecanismo biológico subyacente a los efectos 
del alcohol.33 El estudio midió los niveles de GMe mediante 
cromatografía líquida de alta resolución en 256 hombres con 
AUD y 361 hombres sin AUD. Los resultados mostraron que la 
presencia del trastorno se asocia con niveles más bajos de GMe. 
Una diferencia mínima del 0,1% en los niveles de GMe entre casos 
y controles puede representar más de 28 000 citosinas metiladas 
de forma diferencial en el genoma humano.34

 
El estado de hipometilación descrito en este análisis ha sido 
previamente reportado por otros autores y se asocia con mayor 
consumo de alcohol y con el desarrollo del AUD, según estudios 
de asociación del epigenoma completo.35-38 La hipometilación 
es fisiopatológicamente relevante debido a su capacidad para 
generar inestabilidad genómica y ha sido relacionada con cáncer 
y trastornos psiquiátricos como esquizofrenia y TDAH, lo que 
refuerza su asociación con el AUD.39-41

 
Entre los mecanismos propuestos para explicar la hipometilación 
inducida por el alcohol se destacan dos: La inhibición de los 
donantes de grupos metilo y la reducción de los niveles de ADN 
metiltransferasas, así como la inducción de estrés oxidativo que 
inactiva la metionina adenosil-transferasa y otras enzimas invo-
lucradas en la metilación.42-45

 
Desde el punto de vista nutricional, los pacientes con AUD son 
propensos a déficits de nutrientes como el folato y vitaminas del 
complejo B, cofactores esenciales en las reacciones de transferen-
cia de metilo. Estudios preclínicos han demostrado que las dietas 
deficientes aumentan el consumo de etanol y que la exposición al 
alcohol altera la homeostasis del folato de forma proporcional.46 
Además, el alcohol puede inducir irregularidades en el ADN 
cuya reparación conlleva procesos de desmetilación.47 El con-
sumo crónico de alcohol también constituye un factor de riesgo 
relevante para el desarrollo de enfermedad hepática alcohólica, 
caracterizada por esteatosis e inflamación hepática.33

 
En relación con la interacción entre genética, alimentación y peso 
corporal, el estudio de Pérez et al evaluó 155 individuos de Puerto 
Madryn (Argentina) mediante cuestionarios y mediciones antro-
pométricas, analizando polimorfismos en 18 genes relacionados 
con el metabolismo del alcohol. Se encontró que el alelo T de 
la variante rs4646543 del gen ALDH1A1 se asocia con mayor 
frecuencia y cantidad de consumo de alcohol.48

 
El gen ALDH1A1 también participa en la regulación del tejido 
adiposo y la obesidad, y se asocia con la modulación negativa de 
la dopamina, neurotransmisor clave en los circuitos de motivación 
y recompensa.49,50 En adipocitos, su expresión se relaciona con 
el aumento de la apoptosis y la inhibición de la adipogénesis, 
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procesos que podrían favorecer la termogénesis y la reducción 
de grasa corporal.51-53

 
TRATAMIENTO Y PRONÓSTICO
 
La herramienta más utilizada para la detección del AUD es la 
Prueba de Identificación de Trastornos por Consumo de Alcohol 
(AUDIT). Sin embargo, a pesar de que se trata de un trastorno 
completamente prevenible, no se implementan de manera siste-
mática estrategias dirigidas a individuos con alta susceptibilidad 
genética o psicosocial. En su lugar, los pacientes suelen ser tra-
tados tardíamente, cuando el consumo ya es severo. Identificar 
tempranamente a personas con alto riesgo antes del inicio del 
consumo podría minimizar el daño y maximizar la eficacia de 
los programas de prevención e intervención.4

 
Aunque considerar el componente genético puede parecer comple-
jo, especialmente en adolescentes o individuos sin conocimiento 
de antecedentes familiares, en trastornos poligénicos no se espera 
que la mayoría de los afectados presenten antecedentes familiares 
positivos.54-56 La heredabilidad del AUD, estimada en 50%, per-
mite identificar individuos con mayor riesgo, el cual también se 
asocia con la gravedad del trastorno y la capacidad de remisión. 
Esta identificación se realiza mediante la puntuación de riesgo 
poligénico, definida como la suma ponderada de alelos de riesgo 
de SNV en el genoma.11-18

 
Otra estrategia terapéutica emergente se relaciona con el papel 
de la microbiota intestinal. Estudios han demostrado que las 
alteraciones inducidas por el alcohol pueden contribuir a los sín-
tomas del AUD, y que la suplementación con metabolitos como 
SCFA o GABA puede reducir el consumo de alcohol en modelos 
animales.57-59 Asimismo, la gabapentina ha sido propuesta como 
tratamiento potencial.60-63 Aunque la relación entre el GABA in-
testinal y el del sistema nervioso central no está completamente 
esclarecida, se ha observado una mayor expresión de vías me-
tabólicas relacionadas con GABA en la microbiota de pacientes 
con AUD.64 El trasplante de microbiota intestinal de donantes 
sanos también ha mostrado reducción del consumo de alcohol 
en modelos humanos y animales.65,66 A pesar del creciente interés 
en estas estrategias, aún no existe una comprensión completa 
del papel del microbioma intestinal en el tratamiento del AUD.2

 
CONCLUSIONES
 
El análisis de los factores genéticos implicados en el AUD evi-
dencia que múltiples rutas biológicas potencialmente terapéuticas, 
como las relacionadas con la microbiota intestinal, aún no han 
sido completamente exploradas. Se recomienda el desarrollo 
de estudios longitudinales que permitan comprender mejor la 
interacción entre factores genéticos y ambientales. Un enfoque 
personalizado y predictivo basado en la genética podría mejorar 

la prevención y reducir las recaídas asociadas a tratamientos no 
personalizados, promoviendo una medicina preventiva orientada 
a disminuir la aparición del trastorno y optimizar la efectividad 
terapéutica a nivel individual.
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