Autoeficacia y logro de aprendizaje en estudiantes con diferente estilo cognitivo en un ambiente m-learning

  • Omar López Vargas
  • Juliana Ortiz-Vásquez Universidad Pedagógica Nacional
  • Jaime Ibáñez-Ibáñez Universidad Pedagógica Nacional
Palabras clave: Andamiaje, autoeficacia, diferencias individuales, logro académico, ambiente m-learning

Resumen

Objetivo. Explorar los efectos de un andamiaje motivacional sobre el logro académico y la autoeficacia,
tanto académica como online, en estudiantes con diferente estilo cognitivo en la dimensión Dependencia-
Independencia de Campo (DIC), cuando aprenden contenidos matemáticos en un ambiente m-learning.
Método. Participaron 56 estudiantes de educación secundaria de un colegio femenino público de la ciudad
de Villavicencio, Colombia. La investigación siguió un diseño cuasi-experimental. Los participantes fueron
distribuidos de forma aleatoria en dos grupos: (a) un grupo de estudiantes interactuó con un ambiente
m-learning, el cual incluyó dentro de su estructura un andamiaje motivacional; y (b) otro grupo interactuó con un ambiente m-learning sin andamiaje. El estilo cognitivo de las estudiantes se determinó a través de pruebas y se aplicaron dos pos-test de autoeficacia. Resultados. El andamiaje favoreció tanto el logro académico como la autoeficacia académica y online de las estudiantes con diferente estilo cognitivo. Conclusión. Los datos evidenciaron que las estudiantes, en la dimensión DIC, lograron aprendizajes equivalentes debido al efecto del andamiaje motivacional que fue incluido en el ambiente m-learning. También fue posible establecer que tanto la autoeficacia académica como la autoeficacia online de los aprendices dependientes de campo favorecen el logro académico.

Biografía del autor/a

Omar López Vargas

Doctorado Interinstitucional en Educación

Departamento de Tecnología

Centro de Informática CIDUP

Citas

Aesaert, K., Voogt, J., Kuiper, E., & Van-Braak, J. (2017). Accuracy and Bias of ICT Self-Efficacy: An Empirical Study into Students’ over and Underestimation of their ICT Competences. Computers in Human Behavior, 75, 92-102. doi: 10.1016/j.chb.2017.05.010

Alias, N. (2012). Design of a Motivational Scaffold for the Malaysian e-Learning Environment. Educational Technology and Society, 15(1), 137-151. Recuperado de https://eric.ed.gov/?id=EJ979457

Artino, A. R. (2010). Online or Face-to-Face Learning? Exploring the Personal Factors that Predict Students' Choice of Instructional Format. Internet and Higher Education, 13(4), 272-276. doi: 10.1016/j.iheduc.2010.07.005

Artino, A. R., & McCoach, D. B. (2008). Development and Initial Validation of the Online Learning Value and Efficacy Scale. Journal of Educational Computing Research, 38(3), 279-303. doi: 10.2190/EC.38.3.c

Bandura, A. (1997). Self-Efficacy: The Exercise of Control. New York: Freeman.

Belland, B., Kim, C., & Hannafin, M. (2013). A Framework for Designing Scaffolds that Improve Motivation and Cognition. Educational Psychologist, 48(4), 243-270. doi: 10.1080/00461520.2013.838920

Campbell, D. y Stanley, J. (2005). Diseños experimentales y cuasiexperimentales en la investigación social (9.ª ed.). Buenos Aires: Amorrortu.

Chen, S., & Macredie, R. (2001). Cognitive Styles and Hypermedia Navigation: Development of a Learning Model. Journal of the American Society for Information Science and Technology, 53(1), 3-15. doi: 10.1002/asi.10023

Chou, H. W. (2001). Influences of Cognitive Style and Training Method on Training Effectiveness. Computers and Education, 37(1), 11-25. https://doi.org/10.1016/S0360-1315(01)00028-8

Compeau, D. R., & Higgins, C. A. (1995). Computer Self-Efficacy: Development of a Measure and Initial Test. Management Information Systems Quarterly, 19(2), 189-211. doi: 10.2307/249688

D’Mello, S., Lehman, B., & Graesser, A. (2011). A Motivationally Supportive Affect-Sensitive Autotutor. In R. Calvo, & S. D’Mello (Eds.), New Perspectives on Affect and Learning Technologies (pp.113-126). New York: Springer.

DeTure, M. (2004). Cognitive Style and Self-Efficacy: Predicting Student Success in Online Distance Education. American Journal of Distance Education, 18(1), 21-38. https://doi.org/10.1207/s15389286ajde1801_3

Duffy, M. C., & Azevedo, R. (2015). Motivation Matters: Interactions between Achievement Goals and Agent Scaffolding for Self-Regulated Learning within an Intelligent Tutoring System. Computers in Human Behavior, 52, 338-348. https://doi.org/10.1016/j.chb.2015.05.041

Handal, B., & Herrington, T. (2004). On being dependent and independent in computer based learning environments. e-Journal of Instructional Science and Technology, (7)2. Recuperado de http://files.eric.ed.gov/fulltext/EJ850352.pdf

Hatlevik, O., Throndsen, I., Loi, M., & Gudmundsdottir, G. (2018). Students’ ICT Self-Efficacy and Computer and Information Literacy: Determinants and Relationships. Computers & Education, 118, 107-119. doi: 10.1016/j.compedu.2017.11.011

Hederich-Martínez, C., & Camargo-Uribe, A. (2015). Cognitive Style and Educational Performance. The Case of Public Schools in Bogotá, Colombia. Educational Psychology, 36(4), 719-737. doi: 10.1080/01443410.2015.1091916

Hederich-Martínez, C., López-Vargas, O., & Camargo-Uribe, A. (2016). Effects of the Use of a Flexible Metacognitive Scaffolding on Self-Regulated Learning During Virtual Education. International Journal of Technology Enhanced Learning, 8(3/4), 199-216. doi: 10.1504/IJTEL.2016.10002201

Huang, Y. M., Jeng, Y. L., & Huang, T. C. (2009). An Educational Mobile Blogging System for Supporting Collaborative Learning. Educational Technology & Society, 12(2), 163-175. Recuperado de https://www.learntechlib.org/p/75319/

Huertas, A., López, O., & Sanabria, L. (2017). Influence of a Metacognitive Scaffolding for Information Search in B- Learning Courses on Learning Achievement and its Relationship with Cognitive and Learning Style. Journal of Educational Computing Research, 55(2), 1-25. doi: 10.1177/0735633116656634

Keller, J. (2010). Motivational Design for Learning and Performance. The ARCS model approach. Boston: Springer Science & Business Media. doi: 10.1007/978-1-4419-1250-3

Kim, M. C., & Hannafin, M. J. (2011). Scaffolding Problem Solving in Technology-Enhanced Learning Environments (TELEs): Bridging Research and Theory with Practice. Computers & Education, 56(2), 403-417. doi: 10.1016/j.compedu.2010.08.024

Kukulska-Hulme, A. G., & Traxler, J. (2005). Mobile Learning. A Handbook for Educators and Trainers. New York: Routedge Falmer.

Lehmann, T., Hähnlein, I., & Ifenthaler, D. (2014). Cognitive, Metacognitive and Motivational Perspectives on Preflection in Self-Regulated Online Learning. Computers in Human Behavior, 32, 313-323. doi: 10.1016/j.chb.2013.07.051

López, O., Sanabria, L. y Sanabria, M. (2014). Logro de aprendizaje en ambientes computacionales. Autoeficacia, metas y estilo cognitivo. Psicología desde el Caribe, 31(3), 475-494. http://dx.doi.org/10.14482/psdc.31.3.5366

López, O. y Triana, S. (2013). Efecto de un activador computacional de autoeficacia sobre el logro de aprendizaje en estudiantes de diferente estilo cognitivo. Revista Colombiana de Educación, 64(1), 225-244. doi: 10.17227/01203916.64rce225.244

López, O. y Valencia, N. (2012). Diferencias individuales en el desarrollo de la autoeficacia y el logro académico: el efecto de un andamiaje computacional. Acta Colombiana de Psicología, 15(2), 29-41. Recuperado de http://www.redalyc.org/articulo.oa?id=79825836001López, O., Hederich, C. y Camargo, A. (2011). Estilo cognitivo y logro académico. Educación y Educadores, 14(1), 67-82. doi: 10.5294/edu.2011.14.1.4

López-Vargas, O., Duarte-Suárez, L., & Ibáñez-Ibáñez, J. (2017). Teacher’s Computer Self-Efficacy and its Relationship with Cognitive Style and TPACK. Improving Schools, 20(3), 264-277. doi: 10.1177/1365480217704263

López-Vargas, O., Ibáñez-Ibáñez, J., & Racines-Prada, O. (2017). Students’ Metacognition and Cognitive Style and their Effect on Cognitive Load and Learning Achievement. Educational Technology & Society, 20(3), 145-157. Recuperado de https://eric.ed.gov/?id=EJ1147009

Papastergiou, M., Gerodimos, V., & Antoniou, P. (2011). Multimedia Blogging in Physical Education: Effects of Student Knowledge and ICT Self-Efficacy. Computers & Education, 57(3), 1998-2010. doi: 10.1016/j.compedu.2011.05.006

Pintrich, P., Smith, D., García, T., & McKeachie, W. (1991). A Manual for the Use of the Motivated Strategies for Learning Questionnaire (MSLQ). Ann Arbor, MI: National Center for Research to Improve Postsecondary Teaching and Learning.

Razzaq, A., Samiha, Y., & Anshari, M. (2018). Smartphone Habits and Behaviors in Supporting Students Self-Efficacy. International Journal of Emerging Technologies in Learning, 13(2), 94-109. http://dx.doi.org/10.3991/ijet.v13i02.7685

Tsai, C. C., Chuang, S. C., Liang, J. C., & Tsai, M. J. (2011). Self-efficacy in internet-based learning environments: A literature review. Educational Technology & Society, 14(4), 222–240. Recuperado de https://www.jstor.org/stable/jeductechsoci.14.4.222?seq=1

Tsai, M. J., & Tsai, C. C. (2010). Junior High School Students’ Internet Usage and Self-Efficacy: A Re-Examination of the Gender Gap. Computers & Education, 54(4), 1182-1192. Recuperado de https://www.learntechlib.org/p/67427/

Valencia-Vallejo, N., López-Vargas, O., & Sanabria-Rodríguez, L. (2018). Effect of a Motivational Scaffolding on e-Learning Environments: Self-Efficacy, Learning Achievement, and Cognitive Style. Journal Educators On-line, 15(1), 1-14. Recuperado de https://files.eric.ed.gov/fulltext/EJ1168944.pdf

Valencia-Vallejo, N., López-Vargas, O., & Sanabria-Rodríguez, L. (2019). Effect of a Metacognitive Scaffolding on Self-Efficacy, Metacognition, and Achievement in e-Learning Environments. Knowledge Management & ELearning, 11(1), 1-19. https://doi.org/10.34105/j.kmel.2019.11.001

Vygotsky, L. (1978). Mind in society: The Development of Higher Mental Process. Cambridge: Harvard University Press.

Witkin, H., Moore, C., Goodenough, D., & Cox, P. (1977). Field-Dependent and Field-Independent Cognitive Styles and their Educational Implications. Review of Educational Research, 47(1), 1-64. doi: 10.3102/00346543047001001

Wood, D., Bruner, J., & Ross, G. (1976). The Role of Tutoring in Problem Solving. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 17(2), 89-100. doi: 10.1111/j.1469-7610.1976.tb00381.x

Yang, S. H. (2012). Exploring College Students’ Attitudes and Self-Efficacy of Mobile Learning. Turkish Online Journal of Educational Technology, 11(4), 148-154. Recuperado de https://eric.ed.gov/?id=EJ989264

Yorganci, S. (2017). Investigating Students’ Self-Efficacy and Attitudes towards the Use of Mobile Learning. Journal of Education and Practice, 8(6), 181-185. Recuperado de https://files.eric.ed.gov/fulltext/EJ1133019.pdf

Zhang, M., & Quintana, C. (2012). Scaffolding Strategies for Supporting Middle School Students’ Online Inquiry Processes. Computers and Education, 58(1), 181-196. doi: 10.1016/j.compedu.2011.07.016

Zheng, L., Li, X., & Chen, F. (2016). Effects of a Mobile Self-Regulated Learning Approach on Students' Learning Achievements and Self-Regulated Learning Skills. Innovations in Education and Teaching International, 55(6), 1-9. doi: 10.1080/14703297.2016.1259080

Zimmerman, W.A., & Kulikowich, J.M. (2016). Online Learning Self-Efficacy in Students with and without Online Learning Experience. American Journal of Distance Education, 30(3), 180-191. doi: 10.1080/08923647.2016.1193801

Publicado
2020-08-21
Cómo citar
López Vargas, O., Ortiz-Vásquez, J., & Ibáñez-Ibáñez, J. (2020). Autoeficacia y logro de aprendizaje en estudiantes con diferente estilo cognitivo en un ambiente m-learning. Pensamiento Psicológico, 18(1), 71 - 85. https://doi.org/10.11144/Javerianacali.PPSI18-1.alae
Sección
Artículos de investigación original