Mecanismos neuropatológicos del citomegalovirus en parálisis cerebral

Palabras clave: Parálisis Cerebral, Citomegalovirus, Fisiopatología, Mecanismos, Infecciones por Citomegalovirus, Trastornos del Neurodesarrollo

Resumen

La parálisis cerebral (PC) es el desorden neurológico más común en niños y está asociado a alteraciones en el neurodesarrollo fetal y postnatal temprano. Dentro de los factores de riesgo se encuentran las infecciones congénitas y hasta un 7% de los casos de PC se atribuyen a Citomegalovirus (CMV). En el presente artículo se revisan algunos mecanismos fisiopatológicos que se han descrito en relación con el virus y sus efectos en el contexto de la PC, con el fin de resaltar procesos que pueden constituirse en blancos de intervención terapéutica o preventiva. Por un lado, se evidencia un rol importante de la inflamación y de citoquinas proinflamatorias, las cuales a través de su acción citotóxica y mecanismos de hipoxia-isquemia, conllevan a injuria de la sustancia blanca como la leucomalacia periventricular y a mayor susceptibilidad de parto pretérmino. Por otra parte, se encontró una asociación entre la infección por CMV y la pérdida de células troncales neuronales (CTNs) que expresan CD133, nestina y CD24, además de la regulación a la baja de moléculas como el factor neurotrófico derivado del cerebro (BDNF), la neurotrofina-3 (NT-3) y la doblecortina (DCX), constituyendo bases moleculares de algunas manifestaciones clínicas de la PC como la discapacidad intelectual. Asimismo, un blanco que interactúa directamente con el CMV es el receptor del factor de crecimiento epidérmico (EGFR), necesario para su endocitosis celular y para la activación de cascadas de señalización que promueven la latencia, supervivencia, diferenciación y señalización celular. A pesar de la descripción de estos fenómenos y de las relaciones epidemiológicas y características clínicas en estos pacientes, no ha sido posible demostrar una relación monocausal entre ambas condiciones.

Palabras clave: Parálisis cerebral, citomegalovirus, fisiopatología, mecanismos, infecciones por citomegalovirus, trastornos del neurodesarrollo.

Abstract:

Cerebral palsy (CP) is the most common neurological disorder in children and is associated with alterations in early fetal and postnatal neurodevelopment. Among the risk factors are congenital infections and up to 7% of PC cases are attributed to Cytomegalovirus (CMV). This article describes some pathophysiological mechanisms that have been described in relation to the virus and its effects in the context of PC, in order to highlight processes that can become targets of therapeutic or preventive intervention. On the one hand, there is an important role of inflammation and proinflammatory cytokines, which, through their cytotoxic action and hypoxia-ischemia mechanisms, lead to white matter injury such as periventricular leukomalacia and greater susceptibility to preterm delivery. On the other hand, an association was found between CMV infection and the loss of neuronal stem cells (NSCs) expressing CD133, nestin and CD24, in addition to downregulation of molecules such as brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and doublecortin (DCX), constituting molecular bases of some clinical manifestations of PC such as intellectual disability. Likewise, a target that interacts directly with CMV is the epidermal growth factor receptor (EGFR), necessary for its cellular endocytosis and for the activation of signaling cascades that promote latency, survival, differentiation and cell signaling. Despite the description of these phenomena and the epidemiological relationships and clinical characteristics in these patients, it has not been possible to demonstrate a monocausal relationship between both conditions.

Key words: Cerebral palsy, cytomegalovirus, physiopathology, mechanisms, cytomegalovirus infection, neurodevelopmental disorders.

Biografía del autor/a

María José Escobar-Domingo, Pontificia Universidad Javeriana Cali (Colombia).

Estudiante de Medicina, Semillero de Innovadores en Salud ISSEM, Pontificia Universidad Javeriana Cali (Colombia).

Lina Becerra, Pontificia Universidad Javeriana Cali (Colombia).

Médica, Magíster en Ciencias Biomédicas, Doctora (e) en Ciencias Biomédicas, Profesor Departamento de Ciencias Básicas de la Salud

Citas

Gibson CS, Maclennan AH, Goldwater PN, Dekker GA. THE ANTENATAL CAUSES OF CEREBRAL PALSY. Fetal Matern Med Rev. 2008;19(3):181-201. DOI: 10.1017/S0965539508002210

Paneth N, Hong T, Korzeniewski S. The Descriptive Epidemiology of Cerebral Palsy. Clini. 2006; 33:251-267. DOI: 10.1016/j.clp.2006.03.011

Wimalasundera N, Stevenson VL. Cerebral palsy. Pr Neurol. 2016; 16:184-194. DOI: 10.1136/practneurol-2015-001184

Ministerio de la Protección Social. Sala situacional de las Personas con Discapacidad (PCD). Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/PS/salasituacional- discapacidad-junio-2018.pdf. Published 2018.

Bax M, Frcp DM, Rosenbaum P et al. Review Proposed definition and classification of cerebral palsy , April 2005 Executive Committee for the Definition of Cerebral Palsy. 2017; 571-576.

Eunson P. Aetiology and epidemiology of cerebral palsy. Paediatr Child Health (Oxford). 2012; 22(9):361-366. DOI: 10.1016/j. paed.2012.05.008

Cans C. Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Dev Med Child Neurol. 2000; 42:816-824.

Sewell MD, Eastwood DM. Managing common symptoms of cerebral palsy in children. Br Med J. 2014; 349(5474):1-13. DOI: 10.1136/bmj.g5474

Uldall P. Everyday Life and Social Consequences of Cerebral Palsy. Vol III. Elsevier B.V.; 2013. DOI: 10.1016/B978-0-444-52891- 9.00020-8

Michelsen SI, Flachs EM, Uldall P, et al. Original article Frequency of participation of 8-12-year-old children with cerebral palsy : A multi-centre cross-sectional European study. Eur J Paediatr Neurol. 2009; 13:165-177. DOI: 10.1016/j.ejpn.2008.03.005

Dickinson HO, Parkinson KN, Ravens-sieberer U et al. Selfreported quality of life of 8-12-year-old children with cerebral palsy: a cross-sectional European study. 2171-2178.

Kruse M. Lifetime costs of cerebral palsy. Dev Med Child Neurol. 2009; 51:622-628. DOI: 10.1111/j.1469-8749.2008.03190.x

Wu YW, Croen LA, Shah SJ et al. Cerebral Palsy in a Term Population : Risk Factors and Neuroimaging Findings. Pedriatics. 2006; 118(2):690-697. DOI: 10.1542/peds.2006-0278

Kra I, Cans C. Cerebral palsy update. BRAIN Dev. 2009; 31:537-544. DOI: 10.1016/j.braindev.2009.03.009

Fowler KB, Stagno S, Pass RF, Britt WJ, Boll TJ, Alford CA. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med. 1992;326(10):663-667.

Hermansen MC, Hermansen MG. Perinatal Infections and Cerebral Palsy. Clin Perinatol. 2014; 33(2006):315-333. DOI: 10.1016/j.clp.2006.03.002

Sijmons S, Thys K, Ngwese M, et al. High-Throughput Analysis of Human Cytomegalovirus Genome Diversity Highlights the Widespread Occurrence of Gene-Disrupting. J Virol. 2015; 89(15):7673-7695. DOI: 10.1128/JVI.00578-15

Pass RF. Human Herpesviruses: Cytomegalovirus. Viral Infect Humans. 2014; 805-828. DOI: 10.1007/978-1-4899-7448-8

Sinclair J, Reeves M. The intimate relationship between human cytomegalovirus and the dendritic cell lineage. Front Microbiol. 2014; 5(389):1-14. DOI: 10.3389/fmicb.2014.00389

Demmler GJ. Infectious Diseases Society of America and Centers for Disease Control Summary of a Workshop on Surveillance for Congenital Cytomegalovirus Disease. Rev Infect Dis. 1991; 13:315-329.

Ostrander B, Bale JF. Congenital and Perinatal Infections. Vol 162. 1st ed. Elsevier B.V.; 2019. DOI: 10.1016/B978-0-444-64029-1.00006-0

Foulon I, Naessens A, Foulon W, Casteels A, Gordts F. Hearing Loss in Children With Congenital Cytomegalovirus Infection in Relation to the Pedriatics. 2014; 122:e1123-e1127. DOI: 10.1542/peds.2008-0770

Fowler KB, Boppana SB. Seminars in Perinatology Congenital cytomegalovirus infection. Semin Perinatol. 2018; 1-6. DOI: 10.1053/j.semperi.2018.02.002

Dakovic I, Andrada G, Folha T, et al. Clinical features of cerebral palsy in children with symptomatic congenital cytomegalovirus infection. Eur J Paediatr Neurol. 2014. DOI: 10.1016/j. ejpn.2014.04.007

Smithers-sheedy H, Raynes-greenow C, Badawi N, et al. Congenital Cytomegalovirus among Children with Cerebral Palsy. J Pediatr. 2016; 3-8. DOI: 10.1016/j.jpeds.2016.10.024

Ashwal S, Russman BS, Blasco PA, Miller G, Sandler A. Practice Parameter : Diagnostic assessment of the child with cerebral palsy Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2004; 62:851-863.

Korzeniewski SJ. Single-cause attribution in a multifactorialworld: cerebral palsy attributed to or associated with congenital cytomegalovirus ? A physiological approach to motor development within and across domains. Dev Med Child Neurol. 2014; 56:802-803. DOI: 10.1111/dmcn.12514

Goldenberg RL. Intrauterine Viral Infection at the Time of Second Trimester Genetic Amniocentesis. Obestetrics Gynecol. 1995; 7844(98):420-424.

Brown HL, Abernathy MP. Cytomegalovirus Infection. Semin Perinatol. 1998; 22(4):260-266.

Cheeran MC, Lokensgard JR, Schleiss MR. Neuropathogenesis of Congenital Cytomegalovirus Infection : Disease Mechanisms and Prospects for Intervention. Clin Microbiol Rev. 2009; 22(1):99-126. DOI: 10.1128/CMR.00023-08

Fields BN, Knipe DM, Howley PM. Fields Virology. 6th ed. Philadelphia; 2013.

Yoon BH, Romero R, Kim C, Koo N. High expression of tumor necrosis factor-or and interleukin-6 in periventricular leukomalacia. Am J Obs Gynecol. 1994; 177(2):406-411.

Kahn MA, De Vellis J. Regulation of an Oligodendrocyte Progenitor Cell Line by the Interleukin-6 Family of Cytokines. Glia. 1994; 12:87-98.

Dammann O, Leviton A. Maternal Intrauterine Infection, Cytokines, and Brain Damage in the Preterm Newborn. Pediatr Res. 1997; 42:1-8. DOI: 10.1203/00006450-199707000-00001

Park JS, Romero R, Yoon BH et al. The relationship between amniotic fluid matrix metalloproteinase-8 and funisitis. Am J Obs Gynecol. 2001; 185(5):1156-1161. DOI: 10.1067/mob.2001.117679

Tsutsui Y. Developmental disorders of the mouse brain induced by murine cytomegalovirus : Animal models for congenital cytomegalovirus infection. Pathol Int. 1995; 45:91-102.

Mutnal MB, Cheeran MC, Hu S, Lokensgard JR. Murine Cytomegalovirus Infection of Neural Stem Cells Alters Neurogenesis in the Developing Brain. PLoS One. 2011; 6(1):e16211. DOI: 10.1371/journal.pone.0016211

Li Z. CD133: a stem cell biomarker and beyond. Exp Hematol Oncol. 2013; 2(17):1-8. DOI: 10.1186/2162-3619-2-17

Bernal A, Arranz L. Nestin ‑ expressing progenitor cells: function, identity and therapeutic implications. Cell Mol Life Sci. 2018; 75(12):2177-2195. DOI: 10.1007/s00018-018-2794-z

Tsutsui Y. Effects of cytomegalovirus infection on embryogenesis and brain development. Congenit Anom (Kyoto). 2009; 49:47-55. DOI: 10.1111/j.1741-4520.2009.00222.x

Leal G, Bramham CR, Duarte CB. BDNF and Hippocampal Synaptic Plasticity. Vol 104. 1st ed. Elsevier Inc.; 2017. DOI: 10.1016/bs.vh.2016.10.004

Rangasamy SB, Soderstrom K, Bakay RAE, Ã JHK. Neurotrophic Factor Therapy for Parkinson ’ s Disease. Vol 184. Elsevier B.V.; 2010. DOI: 10.1016/S0079-6123(10)84013-0

Tessarollo L, Vogel KS, Palko ME, Reid SW, Parada LF. Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc Natl Acad Sci USA. 1994; 91:11844-11848.

Klein R, Silos-Santiago I, Smeyne RJ, et al. Disruption of the neurotrophin-3 receptor gene trkC eliminates Ia muscle afferents and results in abnormal movements. Nature. 1994; 368:249-251.

Pruszak J, Ludwig W, Blak A, Alavian K, Isacson O. CD15, CD24, and CD29 Define a Surface Biomarker Code for Neural Lineage Differentiation of Stem Cells. Stem Cells. 2009; 27(12):2928-2940. DOI: 10.1002/stem.211.CD15

Kawasaki H. Pluripotent stem cells are protected from cytomegalovirus infection at multiple points : Implications of a new pathogenesis for congenital anomaly caused by cytomegalovirus. Congenit Anom (Kyoto). 2012; 52:147-154. DOI: 10.1111/j.1741-4520.2012.00375.x

Gabrielli L, Paola M, Lazzarotto T, et al. Histological findings in foetuses congenitally infected by cytomegalovirus. J Clin Virol. 2009; 46S:S16-S21. DOI: 10.1016/j.jcv.2009.09.026

Zheng K, Kitazato K, Wang Y. Viruses exploit the function of epidermal growth factor receptor. Rev Med Virol. 2014; 24:274-286. DOI: 10.1002/rmv

Semblano A, Falcão C, Fernando P, et al. Mechanisms of human cytomegalovirus infection with a focus on epidermal growth factor receptor interactions. Rev Med Virol. 2017; 27:1-9. DOI: 10.1002/rmv.1955

Wang X, Huong S, Chiu ML, Raab-traub N. Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature. 2003; 424:456-461. DOI: 10.1038/nature01770.1.

Wang X, Huang DY, Huong S, Huang E-S. Integrin αvβ3 is a Coreceptor for Human Cytomegalovirus Infection. Nat Med. 2007; 11(5):515-521.

Chan G, Nogalski MT, Yurochko AD. Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility. PNAS. 2009; 106(52):22369-22374.

Publicado
2019-12-31
Cómo citar
Escobar-Domingo, M., & Becerra, L. (2019). Mecanismos neuropatológicos del citomegalovirus en parálisis cerebral. Salutem Scientia Spiritus, 5(2), 51-56. Recuperado a partir de https://revistas.javerianacali.edu.co/index.php/salutemscientiaspiritus/article/view/2246