Con una capacidad pluripotente, ¿Llegarían a ser las células troncales la cura del Parkinson?

  • Isabella Piedrahita Yusty Pontificia Universidad Javeriana Cali
  • María Antonia Peláez Pontificia Universidad Javeriana Cali
  • Lina Becerra Pontificia Universidad Javeriana Cali https://orcid.org/0000-0002-4468-6716
Palabras clave: Células troncales, Enfermedad de Parkinson, Trasplante de células troncales, Neuronas dopaminérgicas, Intervención terapéutica

Resumen

La enfermedad de Parkinson (EP) es una patología neurodegenerativa que se produce primariamente por una pérdida de las neuronas dopaminérgicas de la porción compacta de la sustancia negra en el mesencéfalo, generando un déficit en la entrega de dopamina a los núcleos de la base, y una disregulación consecuente de circuitos de control motor y cognitivo. El hecho de que los síntomas más elocuentes de la enfermedad sean secundarios a esta anatomía patológica selectiva, convierte a la EP en un candidato perfecto para el ensayo de trasplante de células troncales. Los resultados de los estudios que se han llevado a cabo en modelos murinos y primates de la EP, utilizando células troncales, generan expectativas sobre la potencial implementación de estas como estrategia terapéutica, pues han mostrado un potencial satisfactorio de supervivencia celular, reconexión por circuitos y restablecimiento funcional con mejoría sintomática. A medida que se cuenta con mayor número de estudios, se han encontrado nuevas formas de producir neuronas dopaminérgicas con alta eficiencia y pureza, bajo situaciones cada vez más controladas y en contextos más comparables a la patología humana.

Abstract:

Parkinson’s disease (PD) is a neurodegenerative pathology that is primarily caused by a loss of dopaminergic neurons of the compact portion of the Substantia Nigra in the midbrain, generating a deficit in the delivery of dopamine to the ganglia basal, and a consequent dysregulation of motor and cognitive control circuits. The fact that the most eloquent symptoms of the disease are secondary to this selective pathological anatomy, makes PD a perfect candidate for the stem cell transplant assay. The results of the studies that have been carried out in murine models and primates of PD, using stem cells, generate expectations about their potential implementation as a therapeutic strategy, since they have shown a satisfactory potential for cell survival, circuital reconnection and functional restoration with symptomatic improvement. As more studies are available, new ways of producing dopaminergic neurons with high efficiency and purity have been found, under increasingly controlled situations and in contexts more comparable to human pathology.

Stem cells, Parkinson’s disease, stem cell transplantation, dopaminergic neurons, therapeutic intervention.

Biografía del autor/a

Isabella Piedrahita Yusty, Pontificia Universidad Javeriana Cali

Estudiante de Medicina, Semillero de Innovadores en Salud ISSEM

María Antonia Peláez, Pontificia Universidad Javeriana Cali

Estudiante de Medicina, Semillero de Innovadores en Salud ISSEM

Lina Becerra, Pontificia Universidad Javeriana Cali

Médica, Magíster en Ciencias Biomédicas, Doctora (e) en Ciencias Biomédicas, Profesora Departamento de Ciencias Básicas de la Salud.

Citas

Song CG, Zhang YZ, Wu HN, Cao XL, Guo CJ, Li YQ, Zheng MH, Han H. Stem cells: a promising candidate to treat neurological disorders. Neural Regen Res. 2018; 13(7):1294-304. DOI: 10.4103/1673-5374.235085

Duncan McLauchlan, Neil P. Robertson. Stem cells in the treatment of central nervous system disease. J Neurol. 2018; 265(4):984-986. DOI: 10.1007/s00415-018-8818-7

Goldman S. Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol. 2005; 23: 862-871. DOI: 10.1038/nbt1119

Kirschenbaum B, Nedergaard M, Preuss A, Barami K, Fraser RAR, Goldman S. In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb Cortex. 1994; 4(6):576-589. DOI: 10.1093/cercor/4.6.576

Pincus DW, Keyoung HM, Harrison-Restelli C, Goodman RR, Fraser RA, Edgar M et al. Fibroblast growth factor-2/brain-derived neurotrophic factor-associated maturation of new neurons generated from adult human subependymal cells. Ann Neurol. 1998; 43(5):576-585. DOI: 10.1002/ana.410430505

Roy NS, Wang S, Jiang L, Kang J, Benraiss A, Harrison-Restelli C et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med. 2000; 6(3):271-277. DOI: 10.1038/73119

Sanai N, Tramontin AD, Quiñones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004; 427(6976):740-744. DOI: 10.1038/nature02301

Roy NS, Wang S, Harrison-Restelli C, Benraiss A, Fraser RA, Gravel M et al. Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J Neurosci. 1999; 19(22):9986-9995.

Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann G 2nd, Jiang L et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med. 2003; 9(4):439-447. DOI: 10.1038/nm837

Pincus DW, Harrison-Restelli C, Barry J, Goodman RR, Fraser RA, Nedergaard M et al. In vitro neurogenesis by adult human epileptic temporal neocortex. Clin Neurosurg. 1997; 44:17-25.

Kukekov VG, Laywell ED, Suslov O, Davies K, Scheffler B, Thomas LB et al. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol. 1999; 156(2):333-344. DOI: 10.1006/exnr.1999.7028

Roy NS, Benraiss A, Wang S, Fraser RA, Goodman R, Couldwell WT et al. Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. J Neurosci Res. 2000; 59(3):321-331. DOI: 10.1002/(sici)1097-4547(20000201)59:3<321::aid-jnr5>3.0.co;2-9

Arsenijevic Y, Villemure JG, Brunet JF, Bloch JJ, Déglon N, Kostic C et al. Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol. 2001; 170(1):48-62. DOI: 10.1006/exnr.2001.7691

Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH. Progenitor cells from human brain after death. Nature. 2001; 411(6833):42-43. DOI: 10.1038/35075141

Angevine JB, Bodian D, Coulombre AJ, Edds MV, Hamburger V, Jacobson M et al. Embryonic vertebrate central nervous system: Revised terminology. Anat Rec. 1970; 166(2):257-262. DOI: 10.1002/ar.1091660214

García-Verdugo JM, Doetsch F, Wichterle H, Lim DA, Alvarez-Buylla A. Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol. 1998; 36(2): 234-248. DOI: 10.1002/(sici)1097-4695(199808)36:2<234::aid-neu10>3.0.co;2-e

Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron. 2002; 36(6):1021-1034. DOI: 10.1016/s0896-6273(02)01133-9

Menezes JR, Smith CM, Nelson KC, Luskin MB. The division of neuronal progenitor cells during migration in the neonatal mammalian forebrain. Mol Cell Neurosci. 1995;6(6):496-508. DOI: 10.1006/mcne.1995.0002

Goldman SA. Directed mobilization of endogenous neural progenitor cells: the intersection of stem cell biology and gene therapy. Curr Opin Mol Ther. 2004; 6(5):466-472.

Shihabuddin LS, Numan S, Huff MR, Dodge JC, Clarke J, Macauley SL et al. Intracerebral transplantation of adult mouse neural progenitor cells into the Niemann-Pick-A mouse leads to a marked decrease in lysosomal storage pathology. J Neurosci. 2004; 24(47):10642-10651. DOI: 10.1523/JNEUROSCI.3584-04.2004

Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci. 2002; 22(3):629-634.

Svendsen CN, Bhattacharyya A, Tai YT. Neurons from stem cells: preventing an identity crisis. Nat Rev Neurosci. 2001; 2(11):831-834. DOI: 10.1038/35097581

Lane EL, Handley OJ, Rosser AE, Dunnett SB. Potential cellular and regenerative approaches for the treatment of Parkinson’s disease. Neuropsychiatr Dis Treat. 2008; 4(5):835-845. DOI: 10.2147/ndt.s2013

Björklund A, Lindvall O. Cell replacement therapies for central nervous system disorders. Nat Neurosci. 2000; 3(6):537-544. DOI: 10.1038/75705

Olanow CW, Kordower JH, Freeman TB. Fetal nigral transplantation as a therapy for Parkinson’s disease. Trends Neurosci. 1996; 19(3):102-109. DOI: 10.1016/s0166-2236(96)80038-5

Lindvall O. Cerebral implantation in movement disorders: state of the art. Mov Disord. 1999; 14(2):201-205. DOI: 10.1002/1531-8257(199903)14:2<201::aid-mds1001>3.0.co;2-q

Barker RA. Developing Stem Cell Therapies for Parkinson’s disease: Waiting until the Time is Right. Cell Stem Cell. 2014; 15(5):539-542. DOI: 10.1016/j.stem.2014.09.016

Kefalopoulou Z, Politis M, Piccini P, Mencacci N, Bhatia K, Jahanshahi M et al. Longterm clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol. 2014; 71(1):83-87. DOI: 10.1001/jamaneurol.2013.4749

Sánchez-Danés A, Consiglio A, Richaud Y, Rodríguez-Pizà I, Dehay B, Edel M et al. Efficient generation of A9 midbrain dopaminergic neurons by lentiviral delivery of LMX1A in human embryonic stem cells and induced pluripotent stem cells. Hum Gene Ther. 2012; 23(1):56-69. DOI: 10.1089/hum.2011.054

Lindvall O, Kokaia Z. Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol Sci. 2009; 30(5):260-267. DOI: 10.1016/j.tips.2009.03.001

Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y et al. Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Reports. 2014; 2(3):337-350. DOI: 10.1016/j.stemcr.2014.01.013

Kirkeby A, Grealish S, Wolf DA, Nelander J, Wood J, Lundblad M et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 2012; 1(6):703-714. DOI: 10.1016/j.celrep.2012.04.009

Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011; 480(7378):547-551. DOI: 10.1038/nature10648

Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell. 2014; 15(5):653-665. DOI: 10.1016/j.stem.2014.09.017

Freeman TB, Brundin P. Important Aspects of Surgical Methodology for Transplantation in Parkinson’s Disease. In Brundin P, Olanow CW (editors). Restorative Therapies in Parkinson’s disease. Springer; Boston; 2006. p. 131-165.

Goldberg NRS, Caesar J, Park A, Sedgh S, Finogenov G, Masliah E et al. Neural stem cells rescue cognitive and motor dysfunction in a transgenic model of dementia with lewy bodies through a BDNF-dependent mechanism. Stem Cell Reports. 2015; 5(5):791-804. DOI: 10.1016/j.stemcr.2015.09.008

Kirkeby A, Nolbrant S, Tiklova K, Heuer A, Kee N, Cardoso T et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-Based therapy for Parkinson’s disease. Cell Stem Cell. 2017; 20(1):135-148. DOI: 10.1016/j.stem.2016.09.004

Offen D, Barhum Y, Levy YS, Burshtein A, Panet H, Cherlow T et al. Intrastriatal transplantation of mouse bone marrow-derived stem cells improves motor behavior in a mouse model of Parkinson’s disease. J Neural Transm Suppl. 2007; (72):133-143. DOI: 10.1007/978-3-211-73574-9_16

Kim YJ, Park HJ, Lee G, Bang OY, Ahn YH, Joe E, Kim HO, Lee PH. Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia. 2009; 57(1):13-23.

Delcroix GJ, Garbayo E, Sindji L, Thomas O, Vanpouille-Box C, Schiller PC et al. The therapeutic potential of human multipotent mesenchymal stromal cells combined with pharmacologically active microcarriers transplanted in hemi-parkinsonian rats. Biomaterials. 2011; 32(6):1560-1573. DOI: 10.1016/j.biomaterials.2010.10.041

Ye W, Shimamura K, Rubenstein JL, Hynes MA, Rosenthal A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell. 1998; 93(5):755-766. DOI: 10.1016/s0092-8674(00)81437-3

Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol. 2000; 18(6):675-679. DOI: 10.1038/76536

Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, Wold B et al. Enhanced proliferation, survival and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci. 2000; 20(19):7377-7383. DOI: 10.1523/JNEUROSCI.20-19-07377.2000

Kim JH, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature. 2002; 418(6893):50-56. DOI: 10.1038/nature00900

Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest. 2005; 115(1):102-9. DOI: 10.1172/JCI200521137

Bjorklund LM, Sánchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA. 2002; 99(4):2344-2349. DOI: 10.1073/pnas.022438099

Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia. 2005; 49(3):385-396. DOI: 10.1002/glia.20127

Singh-Roy N, Nakano T, Xuing L, Kang J, Nedergaard M, Goldman SA. Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Exp Neurol. 2005; 196(2):224-234. DOI: 10.1016/j.expneurol.2005.06.021

Goridis C, Rohrer H. Specification of catecholaminergic and serotonergic neurons. Nat Rev Neurosci 2002; 3(7):531-541.

Venkataramana NK, Pal R, Rao SA, Naik AL, Jan M, Nair R c. Bilateral transplantation of allogenic adult human bone marrow-derived mesenchymal stem cells into the subventricular zone of Parkinson’s disease: a pilot clinical study. Stem Cells Int. 2012; 931902. DOI: 10.1155/2012/931902

Herman JP, Abrous ND. Dopaminergic neural grafts after fifteen years: Results and perspectives. Prog. Neurobiol. 1994; 44(1):1-35

Publicado
2020-04-03
Cómo citar
Yusty, I., Peláez, M., & Becerra, L. (2020). Con una capacidad pluripotente, ¿Llegarían a ser las células troncales la cura del Parkinson?. Salutem Scientia Spiritus, 6(1), 67-73. Recuperado a partir de https://revistas.javerianacali.edu.co/index.php/salutemscientiaspiritus/article/view/2253