Breve descripción de algunos cambios fisiológicos en un astronauta

  • Jhan Sebastian Saavedra-Torres Facultad de Ciencias de la Salud, Universidad del Cauca (Colombia)
  • María Virginia Pinzón-Fernández Universidad del Cauca (Colombia)
  • Luisa Fernanda Zúñiga-Cerón Universidad del Cauca (Colombia)
  • Gissel Viviana Ruiz-Astudillo Universidad del Cauca (Colombia)
  • Sofía Fernanda Leal-Bernal Universidad del Cauca (Colombia)
  • Flor de María Muñoz-Gallego Universidad del Cauca (Colombia)
Palabras clave: Viaje espacial, astronauta, fisiología, cardiovascular, micro gravedad, radiación, espacio exterior

Resumen

A través de la historia se vienen describiendo diferentes procesos fisiológicos alterados en las diferentes misiones espaciales; algunos de los sistemas comprometidos son el cardiovascular, osteomuscular, renal, gastrointestinal entre otros. El programa de la National Aeronautics and Space Administration (NASA) se ha propuesto describir cuales son las principales alteraciones evidenciadas en cada uno de estos, a través de estudios poblacionales en las diferentes tripulaciones existentes. La presente revisión bibliográfica describe dichas alteraciones y cuestiona diversas estrategias de prevención e intervención para evitar la afección de dichos sistemas antes, durante y después de las misiones.

Palabras clave: Viaje espacial, astronauta, fisiología, cardiovascular, micro gravedad, radiación, espacio exterior.

Abstract: 

Throughout history, different altered physiological processes will be described in different space missions; some of the compromised systems are cardiovascular, musculoskeletal, renal, and gastrointestinal among others. The program of the National Aeronautics and Space Administration (NASA) has proposed to describe which are the main alterations evidenced in each of these, through population studies in the different specific crews. The present literature review describes various alterations and questions various prevention and intervention strategies to avoid the affectation of these systems before, during and after the mission.

Key words: Space travel, astronaut, physiology, cardiovascular, microgravity, radiation, outer space.

Biografía del autor/a

Jhan Sebastian Saavedra-Torres, Facultad de Ciencias de la Salud, Universidad del Cauca (Colombia)

Médico Interno, Departamento de Medicina Interna, Facultad de Ciencias de la Salud, Universidad del Cauca (Colombia), Programa de Investigación Humana NASA-2019-2020, Corporación del Laboratorio al Campo (Colombia), Grupo de Investigación en Salud (Colombia). 

María Virginia Pinzón-Fernández, Universidad del Cauca (Colombia)

Bacterióloga, Especialista en Educación, Magíster en Salud Pública, Doctora (c) en Antropología Médica, Departamento de Medicina Interna, Facultad de Ciencias de la Salud, Universidad del Cauca (Colombia), Grupo de Investigación en Salud (Colombia).

Luisa Fernanda Zúñiga-Cerón, Universidad del Cauca (Colombia)

Médico Interno, Departamento de Medicina Interna, Facultad de Ciencias de la Salud, Universidad del Cauca
(Colombia), Programa de Investigación Humana NASA- 2019-2020, Corporación del Laboratorio al Campo (Colombia), Grupo de Investigación en Salud (Colombia).

Gissel Viviana Ruiz-Astudillo, Universidad del Cauca (Colombia)

Médica General, Departamento de Medicina Interna, Facultad de Ciencias de la Salud, Universidad del Cauca, Grupo de Investigación en Salud (Colombia).

Sofía Fernanda Leal-Bernal, Universidad del Cauca (Colombia)

Médica General, Departamento de Medicina Interna, Facultad de Ciencias de la Salud, Universidad del Cauca (Colombia), Corporación del Laboratorio al Campo (Colombia), Universidad de Nariño (Colombia).

Flor de María Muñoz-Gallego, Universidad del Cauca (Colombia)

Licenciada en Bióloga, Magíster en Biología, Profesora Departamento de Ciencias Fisiológicas, Departamento de Medicina Interna, Facultad de Ciencias de la Salud, Universidad del Cauca (Colombia), Grupo de Investigación en Salud (Colombia).

Citas

Vico L, Van Rietbergen B, Vilayphiou N, Linossier M, Locrelle H, Normand M et al. Cortical and trabecular bone microstructure did not recover at weight-bearing skeletal sites and progressively deteriorated at non-weight-bearing sites during the year following International Space Station missions. J Bone Miner Res. 2017; 32(10):2010-2021. DOI: 10.1002/jbmr.3188.

Townsend LW. Implications of the space radiation environment for human exploration in deep space. Radiat Prot Dosimetry. 2005; 115:44-50. DOI: 10.1093/rpd/nci141

Boddy J. From shrinking spines to space fungus: The top five dangers of space travel. 2016. Disponible en: https://www.sciencemag.org/news/2016/12/shrinking-spines-space-fungus-topfive-dangers-space-travel

Carrillo-Esper R. Medicina espacial. Academia Nacional de Medicina de México: México; 2016.

Stewart LH, Trunkey D, Rebagliatti SG. Emergency medicine in space. J Emerg Med. 2007; 32:45-54.

Taylor WE, Bhasin S, Lalani R, Datta A, Gonzalez-Cadavid NF. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight. J Gravit Physiol. 2002; 9(2):61-70

Willey JS, Lloyd SA, Nelson GA, Bateman TA. Space radiation and bone loss. Gravit Space Biol Bull. 2011; 25:14-21.

Liakopoulos U, Leivaditis K, Eleftheriadis T, Dombros N. The kidney in space. Int Urol Nephrol. 2012; 44:1893-901. DOI: 10.1007/s11255-012-0289-7

Stein TP. Weigth, muscle and bone loss during space flight: another perspective. Eur J Appl Physiol. 2013; 113(9):2171-81. DOI: 10.1007/s00421-012-2548-9.

Hughson RL. Recent findings in cardiovascular physiology with space travel. Respir Physiol Neurobiol. 2009; 169 Suppl 1:S38-41. DOI: 10.1016/j.resp.2009.07.017

Sibonga JD. Managing the Risk for Early Onset Osteoporosis in Long-Duration Astronauts Due to Spaceflight. NASA Johnson Space Center; Houston, TX, United States. Life Sciences (General); JSC-CN-21978.

Layne CS, Forth KE. Plantar stimulation as a possible countermeasure to microgravity-induced neuromotor degradation. Aviat Space Environ Med. 2008; 79(8):787-94. DOI: 10.3357/asem.2293.2008

A. LeBlanc, T. Matsumoto, J. Jones, J. Shapiro, T. Lang, L. Shackelford, et al., Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int. 2013; 24(7):2105-14. DOI: 10.1007/s00198-012-2243-z

Whitson PA, Pietrzyk RA, Jones JA, Nelman-Gonzalez MA, Hudson EK, Sams CF. Effect of Potassium Citrate Therapy on the Risk of Renal Stone Formation During Spaceflight. J Urol. 2009; 182(5):2490-6. DOI: 10.1016/j.juro.2009.07.010

Human Health and Performance Risks of Space Exploration Missions. McPhee JC, Charles JB (editors). NASA SP-2009-3405. 2009. Disponible en: https://humanresearchroadmap.nasa.gov/ Evidence/reports/EvidenceBook.pdf

Hughson RL, Shoemaker JK, Arbeille P. CCISS, Vascular y BP Reg: Investigación canadiense de ciencias de la vida espacial en ISS. Acta Astronautica. 2014; 104(1):444-448. DOI: 10.1016 /j.actaastro.2014.02.008

Stenger MB, Lee SMC. The Heart of the Matter: AvoidingCardiovascular Dysfunction. National Aeronautics and Space Administration; 2015. Disponible en: https://www.nasa.gov/content/cardiovascular-health

Ade CJ. Incidence Rate of Cardiovascular Disease End Points in the National Aeronautics and Space Administration Astronaut Corps. J Am Heart Assoc. 2017; 6(8): e005564. DOI: 10.1161/ JAHA.117.005564

Charvat JM, Stuart LMC, Wear ML, Stenger MB, Van Baalen M. Cardiovascular Disease Outcomes Among the NASA Astronaut Corps. NASA Center: Johnson Space Center; Galveston; 2018.

Elgart SR. Radiation Exposure and Mortality from Cardiovascular Disease and Cancer in Early NASA Astronauts: Space for Exploration: Washington; 2018.

Zarana P. Evidence Report: Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure. National Aeronautics and Space Administration Lyndon B. Johnson¿ Space Center Houston: Texas; 2018.

Anderson RE, Key CR, Yamamoto T, Thorslund T. Aging in Hiroshima and Nagasaki atomic bomb survivors. Speculations based upon the age-specific mortality of persons with malignant neoplasms. Am J Pathol. 1974; 75:1-11.

Lee SMC. Metabolomic and Genomic Markers of Atherosclerosis as Related to Oxidative Stress, Inflammation, and Vascular Function in Twin Astronauts: Washington; 2017.

Rittweger J, Albracht K, Fluck M, Ruoss S, Brocca L, Longa E et al. Sarcolab pilot study into skeletal muscle’s adaptation to longterm spaceflight. npj Microgravity. 2018; 4(1):18. DOI: 10.1038/ s41526-018-0052-1

Capri M, Morsiani C, Santoro A, Moriggi M, Conte M, Martucci M, Bellavista E et al. Recovery from 6-month spaceflight at the International Space Station: muscle-related stress into a proinflammatory setting. FASEB J. 2019; 33(4):5168-5180. DOI: 10.1096/fj.201801625R

Conference on Nutrition in Space and Related Waste Problems. NASA SP-70. University Of South Florida: Tampa; 1964.

Bourland CT, Smith MC. Selection of human consumables for

future space missions. Waste Manage Res. 1991; 9:339-44.

Ade CJ. Incidence Rate of Cardiovascular Disease End Points in the National Aeronautics and Space Administration Astronaut Corps. J Am Heart Assoc. 2017; 6(8): e005564. DOI: 10.1161/JAHA.117.005564

Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004 Jun;19(6):1006-12. DOI: 10.1359/JBMR.040307

Zwart SR, Launius RD, Coen GK, Morgan JLL, Charles JB, Smith SM. Body mass changes during long duration spaceflight. Aviat Space Environ Med. 2014; 85(9):897-904. DOI: 10.3357/ ASEM.3979.2014

Smith SM, Zwart SR. Nutritional biochemistry of spaceflight. Adv

Clin Chem. 2008; 46:87-130. 2.

Smith SM, Zwart SR, Kloeris V, Heer M. Nutritional biochemistry of space flight. New York: Nova Science Publishers; 2009.

Layne CS, Forth KE. Plantar stimulation as a possible countermeasure to microgravity-induced neuromotor degradation. Aviat Space Environ Med. 2008 Aug;79(8):787-94. DOI: 10.3357/ asem.2293.2008

Crucian B, Stowe RP, Mehta S, Quiriarte H, Pierson D, Sams C. Alterations in adaptive immunity persist during long-duration spaceflight. NPJ Microgravity. 2015; 1:15013. DOI: 10.1038/npjmgrav.2015.13 (2015).

Crucian BE, Stowe RP, Pierson DL, Sams CF. Immune system dysregulation following short- vs long-duration spaceflight. Aviat Space Environ Med. 2008; 79(9):835-43. DOI: 10.3357/asem.2276.2008

Li P, Shi J, Zhang P, Wang K, Li J, Liu H et al. Simulated microgravity disrupts intestinal homeostasis and increases colitis susceptibility. FASEB J. 2015; 29(8):3263-73. DOI: 10.1096/fj.15-271700

Foster JS, Khodadad CL, Ahrendt SR, Parrish ML. Impact of simulated microgravity on the normal developmental time line of an animal-bacteria symbiosis. Sci Rep. 2013; 3:1340. DOI: 10.1038/srep01340.

Pierson DL, Chidambaram M, Heath JD, Mallary L, Mishra SK, Sharma B et al. Epidemiology of Staphylococcus aureus during space flight. FEMS Immunol Med Microbiol. 1996; 16(3-4):273-81. DOI: 10.1111/j.1574-695X.1996.tb00146.x

Johnston RS, Dietlein LF. Skylab Environmental and Crew Microbiology Studies. NASA; 1977.

Kim W, Tengra FK, Young Z, Shong J, Marchand N, Chan HK, Pangule RC, Parra MP, Dordick JS, Plawsky JL, Collins CH. Spaceflight Promotes Biofilm Formation by Pseudomonas aeruginosa. PLOS ONE. 2013; 8(4):e62437. DOI: 10.1371/journal. pone.0062437

Kim W, Tengra FK, Shong J, Marchand N, Chan HK et al. Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability. BMC Microbiology. 2013; 13(1):241. DOI: 10.1186/1471-2180-13-241

Sakai T, Moteki Y, Takahashi T, Shida K, Kiwaki M, Shimakawa Y et al. Probióticos en el espacio exterior: evaluaciones de viabilidad de los probióticos encapsulados liofilizados durante 1 mes de almacenamiento en la Estación Espacial Internacional. Informes científicos. 2018; 8(10687): 11. DOI: 10.1038/ s41598-018-29094-2

Sonnenfeld G. The immune system in space and microgravity. Med Sci Sports Exerc. 2002; 34(12):2021-27.

Crucian B, Stowe R, Mehta S, Uchakin P, Quiriarte H, Pierson D et al. Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J Clin Immunol. 2013; 33(2):456-65. DOI: 10.1007/s10875-012-9824-7

Publicado
2019-12-31
Cómo citar
Saavedra-Torres, J., Pinzón-Fernández, M., Zúñiga-Cerón, L., Ruiz-Astudillo, G., Leal-Bernal, S., & Muñoz-Gallego, F. (2019). Breve descripción de algunos cambios fisiológicos en un astronauta. Salutem Scientia Spiritus, 5(2), 61-66. Recuperado a partir de https://revistas.javerianacali.edu.co/index.php/salutemscientiaspiritus/article/view/2276