El uso de la luz ultravioleta para controlar la transmisión del virus SARS-CoV-2 en medios hospitalarios.

  • Andrés Felipe Zapata-Herrera Pontificia Universidad Javeriana Cali
  • Sandra Milena Moreno-Correa Pontificia Universidad Javeriana Cali https://orcid.org/0000-0003-1435-614X
Palabras clave: SARS-CoV-2, COVID-19, Inactivación viral, Luz UV, Radiación ultravioleta

Resumen

El Virus SARS-CoV 2 causante de la enfermedad COVID-19, se aisló en Wuhan (China) en diciembre de 2019 diseminándose a diferentes países causando una pandemia. Los mecanismos de transmisión del virus le otorgan un potencial de contagio alto, el cual se evidencia por su número de Reproducción (Ro) de 2,5. El virus causa una enfermedad pulmonar severa que puede generar complicaciones respiratorias y en tejidos extrapulmonares. Estas complicaciones son más frecuentes en pacientes con comorbilidades o adultos mayores y requieren manejo intrahospitalario, lo cual genera un riesgo de transmisión hacia el personal de salud y otras personas que entran en contacto con el paciente; por esta razón, es importante utilizar mecanismos efectivos de desinfección, en ese sentido, la irradiación con luz Ultra Violeta (UV) es una alternativa para los espacios cerrados ya que logra inactivar las partículas virales suspendidas en el aire o en superficies sólidas. Este tipo de radiación afecta directamente el genoma viral, pero también puede inducir injuria en las células humanas, por lo tanto, se han implementado sistemas que minimizan la exposición de la luz garantizando la acción germicida, integrados por ejemplo a unidades de recirculación y sistemas en ductos de aire o cámaras germicidas para habitaciones que tienen una función similar y son una alternativa económica, segura y fácil de implementar en nuestro medio. Por lo anterior, el objetivo de esta revisión es analizar las indicaciones y uso de la irradiación UV y los sistemas que integran este tipo de luz en la desinfección de espacios en centros hospitalarios y su impacto en la reducción de la transmisión del virus SARS-CoV2 a los profesionales de la salud y a otro tipo de pacientes.

Abstract:

The SARS-CoV 2 virus causing the COVID-19 disease was isolated in Wuhan (China) in December 2019 and spread to different countries causing a pandemic. The transmission mechanisms of the virus give it a high contagion potential, which is evidenced by its Reproduction number (Ro) of 2,5. The virus causes severe lung disease that can lead to respiratory and extrapulmonary tissue complications. These complications are more frequent in patients with comorbidities or older adults and require in-hospital management, which generates a risk of transmission to health personnel and other people who come into contact with the patient; For this reason, it is important to use effective disinfection and viral inactivation mechanisms, in this sense, irradiation with Ultra Violet (UV) light is an alternative that allows disinfection of closed spaces, inactivating viral particles suspended in the air or on solid surfaces. . This type of radiation directly affects the viral genome, but it can also induce injury in human cells, therefore, systems have been implemented that minimize light exposure, guaranteeing germicidal action, integrated for example with recirculation units and systems in air ducts or germicidal chambers for rooms that have a similar function and are an economic, safe and easy to implement alternative in our environment. Therefore, the objective of this review is to analyze the indications and use of UV irradiation and the systems that integrate this type of light in the disinfection of spaces in hospital centers and their impact on the reduction of transmission of the SARS-CoV2 virus. health professionals and other types of patients.

Key words: SARS-CoV-2, COVID-19, virus inactivation, UV light, ultraviolet radiations.

Biografía del autor/a

Andrés Felipe Zapata-Herrera, Pontificia Universidad Javeriana Cali

Estudiante de medicina, Semillero de Innovadores en Salud ISSEM.

Sandra Milena Moreno-Correa, Pontificia Universidad Javeriana Cali

Odontóloga, Magíster en Ciencias Biomédicas, Profesora Departamento de Ciencias Básicas de la Salud.

Citas

He F, Deng Y, Li W. Coronavirus Disease 2019 (COVID-19): What we know? J Med Virol. 2020. DOI: 10.1002/jmv.25766

Wang L, Wang Y, Ye D, Liu Q. A review of the 2019 Novel Coronavirus (COVID-19) based on current evidence. Int J Antimicrob Agents. 2020. DOI: 10.1016/j.ijantimicag.2020.105948

Trilla A. Un mundo, una salud: la epidemia por el nuevo coronavirus COVID-19 One world, one health: The novel coronavirus COVID-19 epidemic. Med Clin. 2020; 154,(5):175-177

Tay MZ, Poh CM, Rénia L, MacAry PA, Ng L. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020; 28:1-12. DOI: 10.1038/s41577-020-0311-8.

Kampf G. Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020; 104:246-251. DOI: 10.1371/journal.pone.0076968

Darnell M, Subbara K, Feinstone SM, Taylor D. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J Virol Methods. 2004; 121:85-91. DOI: 10.1016/j.jviromet.2004.06.006

Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K et al. Replicación, reparación y recombinación del DNA. En: Alberts B, Bray D, Hopkin K, Johnson A et al (editores). Introducción a la biología celular. Tercera edición. Editorial Médica Panamericana: México; 2011. p. 196-230.

Buonanno M, Randers-Pehrson G, Bigelow AW, Trivedi S, Lowy FD, Spotnitz HM, Hammer SM et al. 207-nm UV light - A promising tool for safe low-cost reduction of surgical site infections. I: in vitro studies. PLoS One. 2013; 8(10):1-7.

Boyd I, Zhang JY, Kogelschatz U. Development and Applications of UV Excimer Lamps. In: Aaron Peled (editor). Photo-Excited Processes, Diagnostics and Applications (PEPDA). Kluwer Academic Publishers: Netherlands; 2003. p. 161-199.

Kowalski W. Hospital Airborne Infection Control. CRC Press: Estados Unidos; 2011.

Kowalski W, Walsh T, Petraitis V. 2020 COVID-19 Coronavirus Ultraviolet Susceptibility. Researchgate Technical Report. 2020. DOI: 10.13140/RG.2.2.22803.22566

Reed NG. The history of ultraviolet germicidal irradiation for air disinfection. Public Health Rep. 2010; 125(1):15-2.

Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin Infect Dis. 2020. DOI: 10.1093/cid/ciaa310.

Ahmad T, Khan M, Haroon, Musa TH, Nasir S, Hui J, Bonilla-Aldana K, Rodriguez-Morales A. COVID-19: Zoonotic aspects. Travel Med Infect Dis. 2020. DOI: 10.1016/j.tmaid.2020.101607.

Doremalen N, Morris D, Holbrooks M, Gamble A, Williamson B, Tamin A, Llooyd-Smith J, Wit E. Aerosol and Surface stability of SARS-CoV-2 as compared with SARS-CoV-1. NEJM.2020. Editor letter. DOI:10.1056/NEJMc2004973

Dundar FS. Covid-19 and the Fibonacci Numbers. Disponible en: http://Users/Medico/Downloads/covid-19-and-the-fibonacci-numbers.pdf

Yegorov Y. COVID-19: Comments of Mathematician and Economist. DOI: 10.13140/RG.2.2.36090.64963. Disponible en: https://www.researchgate.net/publication/339687178

Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, Eggo RM. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020; 20(5):553-558. DOI: 10.1016/S1473-3099(20)30144-4

Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). Science. 2020; 368:489-493. DOI: 10.1126/science.abb3221.

Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host−Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020; 11(7):995-8. DOI: 10.1021/acschemneuro.0c00122

Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin‑converting enzyme 2 (ACE2) as a SARS‑CoV‑2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020; 46(4):586-90. DOI: 10.1007/s00134-020-05985-9

Cheng H, Wang Y, Wang G. Organ-protective Effect of Angiotensin-converting Enzyme 2 and its Effect on the Prognosis of COVID-19. J Med Virol. 2020. DOI: 10.1002/jmv.25785

Yang Y, Peng F, Wang R, Guan K, Jiang T, Xu G et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun. 2020; 109:1-16. DOI: 10.1016/j.jaut.2020.102434

Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol Sin. 2020;1-6. DOI: 10.1007/s12250-020-00207-4

Li H, Liu S, Yu X, Tang S, Tang C. Coronavirus disease 2019 (COVID-19): current status and future perspective. Int J Antimicrob Agents [Internet]. 2020; 1-8. DOI: 10.1016/j.ijantimicag.2020.105951

Yip MS, Cheung CY, Li PH, Bruzzone R, Peiris JSM, Jaume M. Investigation of Antibody-Dependent Enhancement (ADE) of SARS coronavirus infection and its role in pathogenesis of SARS. BioMed Cent. 2011; 5(S1):P80. DOI: 10.1002/rmv.405

Muniyappa R, Gubbi S. Perspective: COVID-19 Pandemic, Corona Viruses, and Diabetes Mellitus. Am J Physiol. 2020. DOI: 10.1152/ajpendo.00124.2020

Heinzerling A, Stuckey MJ, Scheuer T, Xu K, Perkins K, Resseger H et al. Transmission of COVID-19 to Health Care Personnel During Exposures to a Hospitalized Patient-Solano County, California, February 2020. MMWR Morb Mortal Wkly Rep. 2020; 69:472-476. DOI: 10.15585/mmwr.mm6915e5externalicon

Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J. Aerosol Generating Procedures and Risk of Transmission of Acute Respiratory Infections to Healthcare Workers: A Systematic Review. PLoS ONE. 2012; 7(4):e35797. DOI:10.1371/journal.pone.0035797

WHO, Annex G. Use of disinfectants: alcohol and bleach. Infection prevention and control of epidemic and pandemic – prone acute respiratory infections in health care. : WHO: Geneva; 2014. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK214356/

Siddharta A, Pfaender S, Vielle NJ, Dijkman R, Friesland M, Becker B et al. Virucidal Activity of World Health Organization–Recommended Formulations Against Enveloped Viruses, Including Zika, Ebola, and Emerging Coronaviruses. J Infect Dis. 2015; 215:902-6. DOI: 10.1093/infdis/jix046

Kumar A, Abbas AK, Fausto N, Aster JC. Enfermedades ambientales y nutricionales. En: Kumar A, Abbas AK, Fausto N, Aster JC. Robbins y Cotran (editores). Patología estructural y funcional. Octava edición. Elsevier: España; 2010. p. 399-445.

Perdiz D, Grof P, Mezzina M, Nikaido O, Moustacchi E, Sage E. Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells. Possible role of Dewar photoproducts in solar mutagenesis. J Biol Chem. 2000; 275(35):26732-26742. DOI:10.1074/jbc.M001450200

Kenneth JR, George R. Esterilización, desinfección y control de las infecciones. En: Kenneth JR, George R. Microbiología médica de Sherris. Quinta edición. México: McGraw Hill; 2011. p. 37-48.

CDC: Center for Disease Control and Prevention. Atlanta: CDC; 2020. Disponible en: https://blogs.cdc.gov/yourhealthyourenvironment/2017/06/26/summer-sun-safety-protect-yourself-from-uv-radiation/

Setlow RB, Grist E, Thompson K, Woodhead AD. Wavelengths effective in induction of malignant melanoma. Proc Natl Acad Sci USA. 1993; 90(14):6666-6670. DOI:10.1073/pnas.90.14.6666

Balasubramanian, D. Ultraviolet radiation and cataract. J Ocul Pharmacol Ter. 2000; 16:285-297. DOI: 10.1089/jop.2000.16.285

Buonanno M, Ponnaiya B, Welch D, Stanislauskas M, Randers-Pehrson G, Smilenov L, Lowy FD et al. Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light. Radiat Res. 2017; 187(4):483-491. DOI: 10.1667/RR0010CC.1

Welch D, Buonanno M, Grilj V, Shuryak I, Crickmore C, Bigelow AW, Randers-Pehrson G et al. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Sci Rep. 2018; 8: 2752. DOI: 10.1038/s41598-018-21058-w

Bedell K, Buchaklian A, Perlman S. Efficacy of an automated multi-emitter whole room UV-C disinfection system against Coronaviruses MHV and MERS-CoV. Infect Control Hosp Epidemiol. 2016 May ; 37(5): 598-599. DOI: 10.1017/ice.2015.348

ASHRAE. ASHRAE: Atlanta; 2020. Disponible en: https://www.ashrae.org/about/news/2020/ashrae-resources-available-to-address-covid-19-concerns

Walker CM, Ko G. Effect of ultraviolet germicidal irradiation on viral aerosols. Environ Sci Technol. 2007; 41(15):5460-5465. DOI:10.1021/es070056u

Wong TW, Lee CK, Tam W et al. Cluster of SARS among medical students exposed to single patient, Hong Kong. Emerg Infect Dis 2004; 10(2):269-76. DOI: 10.3201/eid1002.030452

Nardell EA. Dodging Droplet Nuclei: Reducing the Probability of Nosocomial Tuberculosis Transmission in the AIDS Era. Am Rev Resp Dis.1990; 142:501-503. DOI: 10.1164/ajrccm/142.3.501

ASHRAE. 2019 ASHRAE Handbook - HVAC Applications. ASHRAE: Atlanta; 2019. Disponible en: https://www.ashrae.org/file%20library/technical%20resources/covid-19/i-p_a19_ch09_health_care_facilities.pdf

Kowalski W, Bahnfleth W, Rosenberger J. Dimensional Analysis of UVGI Air Disinfection Systems. Hvac&r Research. 2003; 9(3):347-363.

OMS. Medio ambiente. En: OMS. Prevención de las infecciones nosocomiales - Guía práctica. Segunda edición. Malta: OMS; 2003. p. 48-49.

Granich R, et al. Guidelines for the Prevention of Tuberculosis in Health Care Facilities in Resource Limited Settings. Suiza: WHO/CDS/TB.

Ginestet A. Development and evaluation of a new test method for portable air cleaners. AIVC Contributed Report. 2012; 15: 1-30

First W, Nardell EA, Chaisson W, Riley R. Guidelines for the application of upper-room ultraviolet germicidal irradiation for preventing transmission of airborne contagion Part 1: Basic principles. ASHRAE. 1999; 105(1):1387

Memarzadeh F, Olmsted RN, Bartley JM. Applications of ultraviolet germicidal irradiation disinfection in health care facilities: effective adjunct, but not stand-alone technology. Am J Infect Control. 2010; 38(5 Suppl 1): S13-S24. DOI: 10.1016/j.ajic.2010.04.208

Milonova S et al. A Design for a More Efficient, Upper Room Germicidal Ultraviolet Air Disinfection Luminaire. Lighting Res. Technol. 2017; 49 (6):788–799. DOI: 10.1177/1477153517711216

Nardell, EA. Interrupting transmission from patients with unsuspected tuberculosis: A unique role for upper-room ultraviolet air disinfection. Am J Infect Control. 1995; 23(2):156-64. DOI: 10.1016/0196-6553(95)90261-9

Boletín informativo de la Facultad de Ingeniería de la Universidad del Valle. Facultad de ingeniería de la Universidad del Valle: Cali; 2020. Disponible en: http://ingenieriainforma.blogspot.com/2020/04/camara-germicida-por-radiacion.html?m=1

CNN [Internet]. México: Romine T, Sgueglia K; 2020 [actualizado 20 mayo 2020; citado 22 mayo 2020]. Disponible en: https://cnnespanol.cnn.com/2020/05/20/coronavirus-lanzan-en-nueva-york-programa-piloto-de-luz-ultravioleta-para-matar-el-covid-19-en-el-transporte-publico/

Publicado
2020-08-12
Cómo citar
Zapata-Herrera, A., & Moreno-Correa, S. (2020). El uso de la luz ultravioleta para controlar la transmisión del virus SARS-CoV-2 en medios hospitalarios. Salutem Scientia Spiritus, 6(1), 107-115. Recuperado a partir de https://revistas.javerianacali.edu.co/index.php/salutemscientiaspiritus/article/view/2343