Trasplante de células madre en enfermedades autoinmunes
Resumen
Introducción: la terapia de trasplante de células madre ha sido utilizada a través de los años para diferentes patologías como las neoplasias hematológicas, hace poco tiempo se empezó a implementar en el tratamiento de las enfermedades autoinmunes refractarias al tratamiento como esclerosis múltiple y sistémica, enfermedad de Crohn y lupus eritematoso sistémico. Objetivo: Indagar acerca del trasplante de células madre, partiendo desde su uso en neoplasias hematológicas y como hoy en día tiene una nueva aplicación en las enfermedades autoinmunes. Materiales y métodos: Se llevo a cabo una revisión de las bases de datos Pubmed, Google académico, Scielo, Redalyc y Scopus, con los descriptores: stem cell, stem cell transplantation y autoimmune disease. Se realizó un análisis de la bibliografía revisada. Resultados: El principal objetivo del trasplante de células madre es renovar el sistema inmune de los pacientes, permitiendo así generar uno nuevo que responda mejor. Este tratamiento ha demostrado una notable disminución de la inflamación y de los síntomas discapacitantes en los pacientes que sufren de enfermedades autoinmunes, ayudándoles a mejorar su calidad de vida. Conclusiones: a pesar de sus múltiples beneficios, aún no se utiliza el trasplante de células madre como terapia estándar en pacientes con estas enfermedades, por lo tanto, es necesario más estudios que indaguen a profundidad el uso de este tratamiento.
Descargas
Referencias
Alexander T, Greco R, Snowden JA. Hematopoietic Stem Cell Transplantation for Autoimmune Disease. Annu Rev Med. 2021; 72:215-28. DOI: 10.1146/annurev-med-070119-115617.
Rose NR. Prediction and Prevention of Autoimmune Disease in the 21st Century: A Review and Preview. Am J Epidemiol. 2016; 183(5):403-6. DOI: 10.1093/aje/kwv292.
Yang X, Hou X, Zhang J, Liu Z, Wang G. Research progress on the application of single-cell sequencing in autoimmune diseases. Genes Immun. 2023; 24(5):220 35. DOI: 10.1038/s41435-023-00216-9.
Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Med. 2015; 278(4):369-95. DOI: 10.1111/joim.12395.
Kao FC, Hsu YC, Tu YK, Chen TS, Wang HH, Lin JC. Long-Term Use of Immunosuppressive Agents Increased the Risk of Fractures in Patients with Autoimmune Diseases: An 18-Year Population-Based Cohort Study. Biomedicines. 2023; 11(10):2764. DOI: 10.3390/biomedicines11102764.
Snowden JA, Badoglio M, Labopin M, Giebel S, McGrath E, Marjanovic Z, et al. Evolution, trends, outcomes, and economics of hematopoietic stem cell transplantation in severe autoimmune diseases. Blood Adv. 2017; 1(27):2742-55. DOI: 10.1182/bloodadvances.2017010041.
Massey Jennifer C, Moore John J, Milliken Samuel T, Ma David D F. Autologous hematopoietic stem cell transplant for autoimmune diseases: evolution, evidence of efficacy, and real-world economics. Blood Cell Ther. 2019; 2(2):12-21. DOI: 10.31547/bct-2018-009.
Passweg JR, Baldomero H, Bader P, Basak GW, Bonini C, Duarte R, et al. Is the use of unrelated donor transplantation leveling off in Europe? The 2016 European Society for Blood and Marrow Transplant activity survey report. Bone Marrow Transplant. 2018; 53(9):1139-48. DOI: 10.1038/s41409-018-0153-1.
Raj K, Eikema DJ, Sheth V, Koster L, de Wreede LC, Blaise D, et al. Comparison of outcomes for HLA-matched sibling and haplo-identical donors in Myelodysplastic syndromes: report from the chronic malignancies working party of EBMT. Blood Cancer J. 2022; 12(9):140. DOI: 10.1038/s41408-022-00729-y.
Jessop H, Farge D, Saccardi R, Alexander T, Rovira M, Sharrack B, et al. General information for patients and carers considering haematopoietic stem cell transplantation (HSCT) for severe autoimmune diseases (ADs): A position statement from the EBMT Autoimmune Diseases Working Party (ADWP), the EBMT Nurses Group, the EBMT Patient, Family and Donor Committee and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Bone Marrow Transplant. 2019; 54(7):933-42. DOI: 10.1038/s41409-019-0430-7.
Alexander T, Bondanza A, Muraro PA, Greco R, Saccardi R, et al. SCT for severe autoimmune diseases: consensus guidelines of the European Society for Blood and Marrow Transplantation for immune monitoring and biobanking. Bone Marrow Transplant. 2015; 50(2):173-80. DOI: 10.1038/bmt.2014.251.
Lotfy A, Elgamal A, Burdzinska A, Swelum AA, Soliman R, Hassan AA, Shiha G. Stem cell therapies for autoimmune hepatitis. Stem Cell Res Ther. 2021; 12(1):386. DOI: 10.1186/s13287-021-02464-w.
Penack O, Peczynski C, Mohty M, Yakoub-Agha I, Styczynski J, Montoto S, et al. How much has allogeneic stem cell transplant-related mortality improved since the 1980s? A retrospective analysis from the EBMT. Blood Adv. 2020 Dec 22;4(24):6283-6290. DOI: 10.1182/bloodadvances.2020003418
Khaddour K, Hana CK, Mewawalla P. Hematopoietic Stem Cell Transplantation. [Updated 2022 Jun 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls; 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK536951/
Hendrawan K, Khoo MLM, Visweswaran M, Massey JC, Withers B, Sutton I, et al. Long-Term Suppression of Circulating Proinflammatory Cytokines in Multiple Sclerosis Patients Following Autologous Haematopoietic Stem Cell Transplantation. Front Immunol. 2022; 12:782935. DOI: 10.3389/fimmu.2021.782935.
Crees ZD, Rettig MP, Jayasinghe RG, Stockerl-Goldstein K, Larson SM, Arpad I, et al. Motixafortide and G-CSF to mobilize hematopoietic stem cells for autologous transplantation in multiple myeloma: a randomized phase 3 trial. Nat Med. 2023; 29(4):869-879. DOI: 10.1038/s41591-023-02273-z
Gudmundstuen AM, Efficace F, Tjønnfjord GE, Skaarud KJ, Cottone F, Hjermstad MJ, et al. The prognostic value of patient-reported outcomes in allogeneic hematopoietic stem cell transplantation: exploratory analysis of a randomized nutrition intervention trial. Ann Hematol. 2023; 102(4):927-935. DOI: 10.1007/s00277-023-05149-x.
Boffa G, Massacesi L, Inglese M, Mariottini A, Capobianco M, Lucia M, et al. Long-Term Clinical Outcomes of Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. Neurology. 2021; 96 (8):e1215-e1226. DOI: 10.1212/WNL.0000000000011461
Wiberg A, Olsson-Strömberg U, Herman S, Kultima K, Burman J. Profound but Transient Changes in the Inflammatory Milieu of the Blood During Autologous Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2020; 26(1):50-57. DOI: 10.1016/j.bbmt.2019.09.010
Balassa K, Danby R, Rocha V. Haematopoietic stem cell transplants: principles and indications. Br J Hosp Med (Lond). 2019; 80(1):33-9. DOI: 10.12968/hmed.2019.80.1.33.
Bravo-González F, Álvarez-Roldán A. Esclerosis múltiple, pérdida de funcionalidad y género. Gac Sanit. 2019; 33(2):177-184. DOI:10.1016/j.gaceta.2017.09.010.
Tolf A, Fagius J, Carlson K, Åkerfeldt T, Granberg T, Larsson EM, et al. Sustained remission in multiple sclerosis after hematopoietic stem cell transplantation. Acta Neurol Scand. 2019; 140(5):320-7. DOI: 10.1111/ane.13147.
Fassas A, Anagnostopoulos A, Kazis A, Kapinas K, Sakellari I, Kimiskidis V, et al. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transplant. 1997; 20(8):631-8. DOI: 10.1038/sj.bmt.1700944.
von Niederhäusern V, Ruder J, Ghraichy M, Jelcic I, Müller AM, Schanz U, et al. B-Cell Reconstitution After Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. Neurol Neuroimmunol Neuroinflamm. 2022; 9(6):e200027. DOI: 10.1212/NXI.0000000000200027.
Hartung DM, Bourdette DN, Ahmed SM, Whitham RH. The cost of multiple sclerosis drugs in the US and the pharmaceutical industry: Too big to fail? Neurology. 2015; 84(21):2185-92. DOI: 10.1212/WNL.0000000000001608.
Khakban A, Rodriguez Llorian E, Michaux KD, Patten SB, Traboulsee A, Oh J, et al. Direct Health Care Costs Associated With Multiple Sclerosis: A Population-Based Cohort Study in British Columbia, Canada, 2001-2020. Neurology. 2023; 100(9):899-910. DOI: 10.1212/WNL.0000000000201645
Burt RK, Balabanov R, Han X, Sharrack B, Morgan A, Quigley K, et al. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA. 2015; 313(3):275-84. DOI: 10.1001/jama.2014.17986.
Willison AG, Ruck T, Lenz G, Hartung HP, Meuth SG. The current standing of autologous hematopoietic stem cell transplantation for the treatment of multiple sclerosis. J Neurol. 2022; 269(7):3937-58. DOI: 10.1007/s00415-022-11063-5.
Burman J, Iacobaeus E, Svenningsson A, Lycke J, Gunnarsson M, Nilsson P, et al. Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: the Swedish experience. J Neurol Neurosurg Psychiatry. 2014; 85(10):1116-21. DOI: 10.1136/jnnp-2013-307207.
Kalincik T, Sharmin S, Roos I, Freedman MS, Atkins H, Burman J, et al. Comparative Effectiveness of Autologous Hematopoietic Stem Cell Transplant vs Fingolimod, Natalizumab, and Ocrelizumab in Highly Active Relapsing-Remitting Multiple Sclerosis. JAMA Neurol. 2023; 80(7):702-13. DOI: 10.1001/jamaneurol.2023.1184.
Nash RA, Hutton GJ, Racke MK, Popat U, Devine SM, Steinmiller KC, et al. High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. Neurology. 2017; 88(9):842-852. DOI: 10.1212/WNL.0000000000003660.
Boffa G, Signori A, Massacesi L, Mariottini A, Sbragia E, Cottone S, et al. Hematopoietic Stem Cell Transplantation in People with Active Secondary Progressive Multiple Sclerosis. Neurology. 2023; 100(11):1109-22. DOI: 10.1212/WNL.0000000000206750
Atkins HL, Bowman M, Allan D, Anstee G, Arnold DL, Bar-Or A, et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet. 2016; 388(10044):576-85. DOI: 10.1016/S0140-6736(16)30169-6
Giedraitiene N, Gasciauskaite G, Kaubrys G. Impact of autologous HSCT on the quality of life and fatigue in patients with relapsing multiple sclerosis. Sci Rep. 2022; 12(1):15404. DOI: 10.1038/s41598-022-19748-7.
Muraro PA, Martin R, Mancardi GL, Nicholas R, Sormani MP, Saccardi R. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat Rev Neurol. 2017; 13(7):391-405. DOI: 10.1038/nrneurol.2017.81.
Bayas A, Berthele A, Blank N, Dreger P, Faissner S, Friese MA, et al. Autologous hematopoietic stem cell transplantation for multiple sclerosis: a position paper and registry outline. Ther Adv Neurol Disord. 2023; 16:17562864231180730. DOI: 10.1177/17562864231180730
Burt RK, Balabanov R, Burman J, Sharrack B, Snowden JA, Oliveira MC, et al. Effect of Nonmyeloablative Hematopoietic Stem Cell Transplantation vs Continued Disease-Modifying Therapy on Disease Progression in Patients With Relapsing-Remitting Multiple Sclerosis: A Randomized Clinical Trial. JAMA. 2019 Jan 15; 321(2):165-174. DOI: 10.1001/jama.2018.18743.
Helbig G, Widuchowska M, Koclęga A, Kopińska A, Kopeć-Mędrek M, Gaweł WB, et al. Safety profile of autologous hematopoietic stem cell mobilization and transplantation in patients with systemic sclerosis. Clin Rheumatol. 2018; 37(6):1709-1714. DOI: 10.1007/s10067-017-3954-5.
Nihtyanova SI, Ong VH, Denton CP. Current management strategies for systemic sclerosis. Clin Exp Rheumatol. 2014; 32(2 Suppl 81):156-64.
Park R, Nevskaya T, Baron M, Pope JE. Immunosuppression use in early systemic sclerosis may be increasing over time. J Scleroderma Relat Disord. 2022;7(1):33-41 DOI: 10.1177/23971983211000971.
Bruera S, Sidanmat H, Molony DA, Mayes MD, Suarez-Almazor ME, Krause K, et al. Stem cell transplantation for systemic sclerosis. Cochrane Database Syst Rev. 2022; 7(7):CD011819. DOI: 10.1002/14651858.CD011819.pub2.
Cheng F, Huang Z, Li Z. Mesenchymal stem-cell therapy for perianal fistulas in Crohn’s disease: a systematic review and meta-analysis. Tech Coloproctol. 2019; 23(7):613-623. DOI: 10.1007/s10151-019-02024-8.
Schwartz DA, Loftus EV Jr, Tremaine WJ, Panaccione R, Harmsen WS, Zinsmeister AR, et al. The natural history of fistulizing Crohn’s disease in Olmsted County, Minnesota. Gastroenterology. 2002; 122(4):875-80. DOI: 10.1053/gast.2002.32362.
Hellers G, Bergstrand O, Ewerth S, Holmström B. Occurrence and outcome after primary treatment of anal fistulae in Crohn’s disease. Gut. 1980; 21(6):525-7. DOI: 10.1136/gut.21.6.525.
Anandabaskaran S, Hanna L, Iqbal N, Constable L, Tozer P, Hart A. Where Are We and Where to Next?-The Future of Perianal Crohn’s Disease Management. J Clin Med. 2023; 12(19):6379. DOI: 10.3390/jcm12196379.
Domènech E, Hinojosa J, Nos P, Garcia-Planella E, Cabré E, Bernal I, et al. Clinical evolution of luminal and perianal Crohn’s disease after inducing remission with infliximab: how long should patients be treated? Aliment Pharmacol Ther. 2005; 22(11-12):1107-13. DOI: 10.1111/j.1365-2036.2005.02670.x.
Zhu M, Xu X, Feng Q, Cui Z, Wang T, Yan Y, et al. Effectiveness of Infliximab on Deep Radiological Remission in Chinese Patients with Perianal Fistulizing Crohn’s Disease. Dig Dis Sci. 2021; 66(5):1658-68. DOI: 10.1007/s10620-020-06398-w.
Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005; 105(10):4120-6. DOI: 10.1182/blood-2004-02-0586.
Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 2005; 105(5):2214-9. DOI: 10.1182/blood-2004-07-2921
Ranjbar A, Hassanzadeh H, Jahandoust F, Miri R, Bidkhori HR, Monzavi SM, et al. Allogeneic adipose-derived mesenchymal stromal cell transplantation for refractory lupus nephritis: Results of a phase I clinical trial. Current Research in Translational Medicine. 2022; 70(2):103324.
Shariati-Sarabi Z, Ranjbar A, Monzavi SM, Esmaily H, Farzadnia M, Zeraati AA. Analysis of clinicopathologic correlations in Iranian patients with lupus nephritis. Int J Rheum Dis. 2013;16(6):731-8.
Monzavi SM, Alirezaei A, Shariati-Sarabi Z, Tavakol Afshari J, Mahmoudi M, Dormanesh B. Efficacy analysis of hydroxychloroquine therapy in systemic lupus erythematosus: a study on disease activity and immunological biomarkers. Inflammopharmacology. 2018; 26(5):1175-82. DOI: 10.1007/s10787-018-0512-y.
Ponticelli C, Doria A, Moroni G. Renal disorders in rheumatologic diseases: the spectrum is changing (Part 1: connective tissue diseases). J Nephrol. 2021; 34(4):1069-1080. DOI: 10.1007/s40620-020-00772-7.
Fernandes das Neves M, Irlapati RV, Isenberg D. Assessment of long-term remission in lupus nephritis patients: a retrospective analysis over 30 years. Rheumatology (Oxford). 2015; 54(8):1403-7.
Kapsia E, Marinaki S, Michelakis I, Liapis G, Sfikakis PP, Boletis J, et al. Predictors of Early Response, Flares, and Long-Term Adverse Renal Outcomes in Proliferative Lupus Nephritis: A 100-Month Median Follow-Up of an Inception Cohort. J Clin Med. 2022; 11(17):5017. DOI: 10.3390/jcm11175017.
Pons-Estel GJ, Serrano R, Plasin MA, Espinosa G, Cervera R. Epidemiology and management of refractory lupus nephritis. Autoimmun Rev. 2011; 10(11):655-63.
Cui W, Tian Y, Huang G, Zhang X, Li F, Liu X. Clinical research progress of novel biologics for the treatment of lupus nephritis. Clin Exp Med. 2023. DOI: 10.1007/s10238-023-01143-9.
Izadi M, Sadr Hashemi Nejad A, Moazenchi M, Masoumi S, Rabbani A, Kompani F, Hedayati Asl AA, et al; Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: a phase I/II randomized placebo-controlled clinical trial. Stem Cell Res Ther. 2022; 13(1):264. DOI: 10.1186/s13287-022-02941-w
Hu J, Yu X, Wang Z, Wang F, Wang L, Gao H, et al. Efectos a largo plazo de la implantación de células madre mesenquimales derivadas de la gelatina de Wharton del cordón umbilical para la diabetes mellitus tipo 1 de nuevo inicio. Endocr J. 2013; 60(3):347-357. DOI: 10.1507/endocrj.EJ12-0343
Carlsson PO, Espes D, Sisay S, Davies LC, Smith CIE, Svahn MG. Umbilical cord-derived mesenchymal stromal cells preserve endogenous insulin production in type 1 diabetes: a Phase I/II randomised double-blind placebo-controlled trial. Diabetologia. 2023; 66(8):1431-41. DOI: 10.1007/s00125-023-05934-3.
Cho J, D’Antuono M, Glicksman M, Wang J, Jonklaas J. Una revisión de los ensayos clínicos: terapia de trasplante de células madre mesenquimales en diabetes mellitus tipo 1 y tipo 2. Soy células madre J. 2018; 7(4):82-93.
Liu X, Li X, Zhang N, Wen X. Ingeniería de islotes de células beta o estructuras similares a islotes para el tratamiento de la diabetes tipo 1. Hipótesis Médicas. 2015; 85(1):82-84. DOI: 10.1016/j.mehy.2015.04.005.
Bluestone JA, Herold K, Eisenbarth G. Genética, patogénesis e intervenciones clínicas en la diabetes tipo 1. Nature. 2010; 464(7293):1293-1300. DOI 10.1038/nature08933.
You L, Ferrat LA, Oram RA, Parikh HM, Steck AK, Krischer J, et al. Type 1 Diabetes Risk Phenotypes Using Cluster Analysis. medRxiv [Preprint]. 2023; 2023.10.10.23296375. DOI: 10.1101/2023.10.10.23296375.
Dang Loan PN, Truong K. Mesenchymal stem cells for diabetes mellitus treatment: new advances. Biomed Res Ther. 2017; 4(1):20
Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006; 107(1):367-372. DOI: 10.1182/blood-2005-07-2657
Cho J, D’Antuono M, Glicksman M, Wang J, Jonklaas J. A review of clinical trials: mesenchymal stem cell transplant therapy in type 1 and type 2 diabetes mellitus. Am J Stem Cells. 2018 ;7(4):82-93.
Berglund AK, Fortier LA, Antczak DF, Schnabel LV. Immunoprivileged no more: measuring the immunogenicity of allogeneic adult mesenchymal stem cells. Stem Cell Res Ther. 2017; 8(1):288. DOI: 10.1186/s13287-017-0742-8.
Petryk N, Shevchenko O. Mesenchymal Stem Cells Anti-Inflammatory Activity in Rats: Proinflammatory Cytokines. J Inflamm Res. 2020; 13:293-301. DOI: 10.2147/JIR.S256932.
Benthuysen JR, Carrano AC, Sander M. Advances in β cell replacement and regeneration strategies for treating diabetes. J Clin Invest. 2016 ;126(10):3651-3660. DOI: 10.1172/JCI87439.
Izadi M, Sadr Hashemi Nejad A, Moazenchi M, Masoumi S, Rabbani A, Kompani F, et al. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: a phase I/II randomized placebo-controlled clinical trial. Stem Cell Res Ther. 2022; 13(1):264. DOI: 10.1186/s13287-022-02941-w.
Swart JF, Delemarre EM, van Wijk F, Boelens JJ, Kuball J, van Laar JM, et al. Haematopoietic stem cell transplantation for autoimmune diseases. Nat Rev Rheumatol. 2017; 13(4):244-56. DOI: 10.1038/nrrheum.2017.7.
Jaime-Pérez JC, González-Treviño M, Meléndez-Flores JD, Ramos-Dávila EM, Cantú-Rodriguez OG, Gutiérrez-Aguirre CH, et al. Autologous ATG-free hematopoietic stem cell transplantation for refractory autoimmune rheumatic diseases: a Latin American cohort. Clin Rheumatol. 2022; 41(3):869-76. DOI: 10.1007/s10067-021-05931-0.
Sureda A, Bader P, Cesaro S, Dreger P, Duarte RF, Dufour C, et al. Indications for allo- and auto-SCT for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2015. Bone Marrow Transplant. 2015; 50(8):1037-56. DOI: 10.1038/bmt.2015.6.
Khan S, Siddiqui K, ElSolh H, AlJefri A, AlAhmari A, Ghemlas I, et al. Outcomes of blood and marrow transplantation in children less than 2-years of age: 23 years of experience at a single center. Int J Pediatr Adolesc Med. 2022; 9(4):190-95. DOI: 10.1016/j.ijpam.2022.09.002.
Alexander T, Thiel A, Rosen O, Massenkeil G, Sattler A, Kohler S, et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood. 2009; 113(1):214-23. DOI: 10.1182/blood-2008-07-168286.
Snowden JA, Sánchez-Ortega I, Corbacioglu S, Basak GW, Chabannon C, de la Camara R, et al. Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2022. Bone Marrow Transplant. 2022; 57(8):1217-39. DOI: 10.1038/s41409-022-01691-w.
Darlington PJ, Touil T, Doucet JS, Gaucher D, Zeidan J, Gauchat D, et al. Diminished Th17 (not Th1) responses underlie multiple sclerosis disease abrogation after hematopoietic stem cell transplantation. Ann Neurol. 2013; 73(3):341-54. DOI: 10.1002/ana.23784.
Massey J, Jackson K, Singh M, Hughes B, Withers B, Ford C, et al Haematopoietic Stem Cell Transplantation Results in Extensive Remodelling of the Clonal T Cell Repertoire in Multiple Sclerosis. Front Immunol. 2022; 13:798300. DOI: 10.3389/fimmu.2022.798300.
Bellutti Enders F, Delemarre EM, Kuemmerle-Deschner J, van der Torre P, Wulffraat NM, Prakken BP, et al. Autologous stem cell transplantation leads to a change in proinflammatory plasma cytokine profile of patients with juvenile dermatomyositis correlating with disease activity. Ann Rheum Dis. 2015; 74(1):315-7. DOI: 10.1136/annrheumdis-2014-206287.
Zhu J, Su G, Lai J, Dong B, Kang M, Li S, et al. Long-term follow-up of autologous hematopoietic stem cell transplantation for refractory juvenile dermatomyositis: a case-series study. Pediatr Rheumatol Online J. 2018; 16(1):72. DOI: 10.1186/s12969-018-0284-3.
Malmegrim KCR, Lima-Júnior JR, Arruda LCM, de Azevedo JTC, de Oliveira GLV, Oliveira MC. Autologous Hematopoietic Stem Cell Transplantation for Autoimmune Diseases: From Mechanistic Insights to Biomarkers. Front Immunol. 2018; 9:2602. DOI: 10.3389/fimmu.2018.02602.
Bose G, Atkins HL, Bowman M, Freedman MS. Autologous hematopoietic stem cell transplantation improves fatigue in multiple sclerosis. Mult Scler. 2019; 25(13):1764-1772. DOI: 10.1177/1352458518802544.
Bergendal G, Martola J, Stawiarz L, Kristoffersen-Wiberg M, Fredrikson S, Almkvist O. Callosal atrophy in multiple sclerosis is related to cognitive speed. Acta Neurol Scand. 2013; 127(4):281-9. DOI: 10.1111/ane.12006.
Russo AW, Stockel KE, Tobyne SM, Ngamsombat C, Brewer K, Nummenmaa A, et al. Associations between corpus callosum damage, clinical disability, and surface-based homologous inter-hemispheric connectivity in multiple sclerosis. Brain Struct Funct. 2022; 227(9):2909-22. DOI: 10.1007/s00429-022-02498-7.
Liang J, Zhang H, Kong W, Deng W, Wang D, Feng X, et al. Safety analysis in patients with autoimmune disease receiving allogeneic mesenchymal stem cells infusion: a long-term retrospective study. Stem Cell Res Ther. 2018; 9(1):312. DOI: 10.1186/s13287-018-1053-4.
Woodard JP, Gulbahce E, Shreve M, Steiner M, Peters C, Hite S, Ramsay NK, DeFor T, Baker KS. Pulmonary cytolytic thrombi: a newly recognized complication of stem cell infusion. Bone Marrow Transplant. 2000; 25(3):293-300.
Yan K, Zhang J, Yin W, Harding JN, Ma F, Wu D, et al. Transcriptomic heterogeneity of cultured ADSCs corresponds to embolic risk in the host. iScience. 2022; 25(8):104822. DOI: 10.1016/j.isci.2022.104822.
Zahid MF, Murad MH, Litzow MR, Hogan WJ, Patnaik MS, Khorana A, Spyropoulos AC, Hashmi SK. Venous thromboembolism following hematopoietic stem cell infusion-a systematic review and meta-analysis. Ann Hematol. 2016; 95(9):1457-64.
Lee A, Badgley C, Lo M, Banez MT, Graff L, Damon L, et al. Evaluation of venous thromboembolism prophylaxis protocol in hematopoietic cell transplant patients. Bone Marrow Transplant. 2023; 58(11):1247-53. DOI: 10.1038/s41409-023-02039-8.
Cho IH, Song YK, Kim MG, Han N, Kim T, Oh JM. Association between interleukin-10 promoter gene polymorphisms and acute graft-versus-host disease after hematopoietic stem cell infusion: a systematic review and meta-analysis. Hematology. 2015; 20(3):121-8.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Vanesa Matute-Mizger, Mateo Uribe Ramirez, María del Mar Duque-Ocampo, Lina María Martínez-Sánchez
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
La Revista Salutem Scientia Spiritus usa la licencia Creative Commons de Atribución – No comercial – Sin derivar: Los textos de la revista son posibles de ser descargados en versión PDF siempre que sea reconocida la autoría y el texto no tenga modificaciones de ningún tipo.