Biomarcadores de la leucemia linfoblástica aguda con compromiso del sistema nervioso central en la infancia.
Resumen
La leucemia linfoblástica aguda infantil es una enfermedad de gran importancia, en la que se da una producción excesiva de linfocitos inmaduros. A su vez, se ha visto que es la forma de cáncer más común en niños, y se ha encontrado en menor medida que es consistente con alteraciones del sistema nervioso central. La leucemia linfoblástica aguda es un tipo de cáncer, el cual se ha visto que es curable en un 80-90% de las veces, además, en niños la supervivencia a largo plazo representa más del 90%. Los biomarcadores en la actualidad se han vuelto piezas clave en la práctica médica, ya que mejoran y especifican la eficacia con la que se puede iniciar el diagnóstico y tratamiento de un paciente, y evidentemente esto aplica para la leucemia linfoblástica aguda. Se mostraron 4 biomarcadores que fueron el BCL11B, el NOTCH1, el SPP1 Y el SCD, y figuran como opciones muy interesantes y que con el uso adecuado pueden volverse fuertes pilares para detectar la leucemia linfoblástica aguda con sus implicaciones del sistema nervioso central en la infancia.
Descargas
Referencias
Gómez-Mercado C, Segura-Cardona M, Pájaro-Cantillo D, Mesa-Largo M. Inci-dencia y determinantes demográficos de la leucemia linfoide aguda en pacientes con cáncer pediátrico, Antioquia. Univ. Salud. 2020; 22(2):112-9. DOI: 10.22267/rus.202202.182
Kansagra A, Dahiya S, Litzow M. Continuing challenges and current issues in acute lymphoblastic leukemia. Leuk Lymphoma. 2018; 59(3):526-41. https://doi.org/10.1080/10428194.2017.1335397
Śliwa-Tytko P, Kaczmarska A, Lejman M, Zawitkowska J. Neurotoxicity Asso-ciated with Treatment of Acute Lymphoblastic Leukemia Chemotherapy and Immunotherapy. Int J Mol Sci. 2022; 23(10):5515. DOI: 10.3390/ijms23105515.
Lenk L, Alsadeq A, Schewe D. Involvement of the central nervous system in acute lymphoblastic leukemia: opinions on molecular mechanisms and clinical implications based on recent data. Cancer Metastasis Rev. 2020; 39(1):173-87. DOI: 10.1007/s10555-020-09848-z.
Inaba H, Mullighan C. Pediatric acute lymphoblastic leukemia. Haematologica. 2020; 105(11):2524-39. DOI: 10.3324/haematol.2020.247031.
Thastrup M, Duguid A, Mirian C, Schmiegelow K, Halsey C. Central nervous system involvement in childhood acute lymphoblastic leukemia: challenges and solutions. Leukemia. 2022; 36(12):2751-68. DOI: 10.1038/s41375-022-01714-x.
Pui C, Evans W. Treatment of acute lymphoblastic leukemia. New England Journal of Medicine. 2006; 354(2):166-78. DOI: 10.1056/NEJMra052603.
Frishman-Levy L, Izraeli S. Advances in understanding the pathogenesis of CNS acute lymphoblastic leukaemia and potential for therapy. Br J Haematol. 2017; 176(2):157-67. DOI: 10.1111/bjh.14411.
Paul S, Short N. Central Nervous System Involvement in Adults with Acute Leukemia: Diagnosis, Prevention, and Management. Curr Oncol Rep. 2022; 24(4):427-36. DOI: 10.1007/s11912-022-01220-4.
Spadoni I, Fornasa G, Rescigno M. Organ-specific protection mediated by co-operation between vascular and epithelial barriers. Nat Rev Immunol. 2017; 17(12):761-73. DOI: 10.1038/nri.2017.100.
Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS. 2020;17(1):35. DOI: 10.1186/s12987-020-00196-2.
Hampe C, Mitoma H. A Breakdown of Immune Tolerance in the Cerebellum. Brain Sci. 2022; 12(3):328. DOI: 10.3390/brainsci12030328.
Aspelund A, Antila S, Proulx S, Karlsen T, Karaman S, Detmar M, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015; 212(7):991-9. DOI: 10.1084/jem.20142290.
Louveau A, Smirnov I, Keyes T, Eccles J, Rouhani S, Peske J, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015; 523(7560):337-41. DOI: 10.1038/nature14432.
Williams M, Yousafzai Y, Elder A, Rehe K, Bomken S, Frishman-Levy L, et al. The ability to cross the blood-cerebrospinal fluid barrier is a generic property of acute lymphoblastic leukemia blasts. Blood. 2016; 127(16):1998-2006. DOI: 10.1182/blood-2015-08-665034.
Yao H, Price T, Cantelli G, Ngo B, Warner M, Olivere L, et al. Leukaemia hi-jacks a neural mechanism to invade the central nervous system. Nature. 2018; 560:55-60. https://doi. org/10.1038/s41586-018-0342-5.
Scharff BFSS, Modvig S, Marquart H, Christensen C. Integrin-Mediated Adhe-sion and Chemoresistance of Acute Lymphoblastic Leukemia Cells Residing in the Bone Marrow or the Central Nervous System. Front Oncol. 2020; 10:775. DOI: 10.3389/fonc.2020.00775.
Münch V, Trentin L, Herzig J, Demir S, Seyfried F, Kraus J, et al. Central nerv-ous system involvement in acute lymphoblastic leukemia is mediated by vascular endothelial growth factor. Blood. 2017; 130(5): 643-54. DOI: https://doi.org/10.1182/blood-2017-03-769315
Jonart L, Ebadi M, Basile P, Johnson K, Makori J, Gordon P. Disrupting the leukemia niche in the central nervous system attenuates leukemia chemo-resistance. Haematologica. 2020; 105(8):2130-40; https://doi.org/10.3324/haematol.2019.230334.
Modvig S, Jeyakumar J, Marquart H, Christensen C. Integrins and the Metasta-sis-like Dissemination of Acute Lymphoblastic Leukemia to the Central Nervous System. Cancers (Basel). 2023; 15(9):2504. DOI: 10.3390/cancers15092504.
Buonamici S, Trimarchi T, Ruocco M, Reavie L, Cathelin S, Mar B, et al. CCR7 signalling as an essential regulator of CNS infltration in T-cell leukaemia. Nature. 2009; 459:1000-4. DOI: https://doi.org/10.1038/nature08020.
Brandum E, Jørgensen A, Rosenkilde M, Hjortø G. Dendritic Cells and CCR7 Expression: An Important Factor for Autoimmune Diseases, Chronic Inflamma-tion, and Cancer. Int J Mol Sci. 2021; 22(15):8340. DOI: 10.3390/ijms22158340.
Förster R, Davalos-Misslitz A, Rot A. CCR7 and its ligands: Balancing immuni-ty and tolerance. Nat. Rev. Immunol. 2008; 8:36-71. DOI: 10.1038/nri2297.
Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014; 124:31-82. DOI: 10.1016/B978-0-12-411638-2.00002-1.
Hattermann K, Mentlein R. An infernal trio: the chemokine CXCL12 and its re-ceptors CXCR4 and CXCR7 in tumor biology. Ann Anat. 2013; 195(2):103-10. DOI: 10.1016/j.aanat.2012.10.013. Epub 2012 Dec 8. PMID: 23279723.
Sarhadi V, Armengol G. Molecular Biomarkers in Cancer. Biomolecules. 2022; 12(8):1021. DOI: 10.3390/biom12081021.
Bardelli V, Arniani S, Pierini V, Di Giacomo D, Pierini T, Gorello P, et al. T-Cell Acute Lymphoblastic Leukemia: Biomarkers and Their Clinical Usefulness. Genes (Basel). 2021; 12(8):1118. DOI: 10.3390/genes12081118.
Di Giacomo D, La Starza R, Gorello P, Pellanera F, Kalender Atak Z, De Keersmaecker K, et al. 14q32 rearrangements deregulating BCL11B mark a dis-tinct subgroup of T-lymphoid and myeloid immature acute leukemia. Blood. 2021; 138(9):773-84. DOI: 10.1182/blood.2020010510.
Meijerink J. BCL11B, the Cerberus of human leukemia. Blood. 2021; 138(9):741-3. DOI: 10.1182/blood.2021011856.
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021; 6(1):402. DOI: 10.1038/s41392-021-00791-1.
García-Peydró M, Fuentes P, Mosquera M, García-León M, Alcain J, Rodríguez A, et al. The NOTCH1/CD44 axis drives pathogenesis in a T cell acute lympho-blastic leukemia model. J Clin Invest. 2018; 128(7):2802-18. DOI: 10.1172/JCI92981.
Bhatia P, Totadri S, Singh M, Sharma P, Trehan A, Bansal D, et al. PEST do-main NOTCH mutations confer a poor relapse free survival in pediatric T-ALL: Data from a tertiary care centre in India. Blood Cells Mol Dis. 2020; 82:102419. DOI: 10.1016/j.bcmd.2020.102419.
Piya S, Yang Y, Bhattacharya S, Sharma P, Ma H, Mu H, et al. Targeting the NOTCH1-MYC-CD44 axis in leukemia-initiating cells in T-ALL. Leukemia. 2022; 36(5):1261-73. DOI: 10.1038/s41375-022-01516-1.
O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 2007; 204(8):1813-24. DOI: 10.1084/jem.20070876.
Thompson B, Buonamici S, Sulis M, Palomero T, Vilimas T, Basso G, et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 2007; 204(8):1825-35. DOI: 10.1084/jem.20070872.
Albertí-Servera L, Demeyer S, Govaerts I, Swings T, De Bie J, Gielen O, et al. Single-cell DNA amplicon sequencing reveals clonal heterogeneity and evolution in T-cell acute lymphoblastic leukemia. Blood. 2021; 137(6):801-11. DOI: 10.1182/blood.2020006996.
Katoh M, Katoh M. Precision medicine for human cancers with Notch signaling dysregulation (Review). Int J Mol Med. 2020; 45(2):279-97. DOI: 10.3892/ijmm.2019.4418.
Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood. 2017; 129(9):1124-33. DOI: 10.1182/blood-2016-09-692582.
Nadeu F, Delgado J, Royo C, Baumann T, Stankovic T, Pinyol M, et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mu-tations in chronic lymphocytic leukemia. Blood. 2016; 127(17):2122-30. DOI: 10.1182/blood-2015-07-659144.
Pozzo F, Bittolo T, Tissino E, Zucchetto A, Bomben R, Polcik L, et al. Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers (Basel). 2022; 14(12):2997. DOI: 10.3390/cancers14122997.
Zheng R, Li M, Wang S, Liu Y. Advances of target therapy on NOTCH1 signal-ing pathway in T-cell acute lymphoblastic leukemia. Exp Hematol Oncol. 2020; 9(1):31. DOI: 10.1186/s40164-020-00187-x.
Baran N, Lodi A, Dhungana Y, Herbrich S, Collins M, Sweeney S, et al. Inhibi-tion of mitochondrial complex I reverses NOTCH1-driven metabolic repro-gramming in T-cell acute lymphoblastic leukemia. Nat Commun. 2022; 13(1):2801. DOI: 10.1038/s41467-022-30396-3.
Lato M, Przysucha A, Grosman S, Zawitkowska J, Lejman M. The New Thera-peutic Strategies in Pediatric T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci. 2021; 22(9):4502. DOI: 10.3390/ijms22094502.
Van der Velden V, de Launaij D, de Vries J, de Haas V, Sonneveld E, Voerman J, et al. New cellular markers at diagnosis are associated with isolated central nervous system relapse in paediatric B-cell precursor acute lymphoblastic leu-kaemia. Br J Haematol. 2016; 172(5):769-81. DOI: 10.1111/bjh.13887.
Zhao K, Ma Z, Zhang W. Comprehensive Analysis to Identify SPP1 as a Prog-nostic Biomarker in Cervical Cancer. Front Genet. 2022; 12:732822. DOI: 10.3389/fgene.2021.732822.
Zhang Z, Li M, Wen Z, Yin Z, Tang Y, Gao S, et al. Degraded frozen soil and weakened frost heave in China due to climate warming. Sci Total Environ. 2023; 164914. DOI: 10.1016/j.scitotenv.2023.164914.
Incesoy-Özdemir S, Sahin G, Bozkurt C, Oren A, Balkaya E, Ertem U, et al. The relationship between cerebrospinal fluid osteopontin level and central nerv-ous system involvement in childhood acute leukemia. Turk J Pediatr. 2013; 55(1):42-9.
Tun H, Personett D, Baskerville K, Menke D, Jaeckle K, Kreinest P, et al. Path-way analysis of pri-mary central nervous system lymphoma. Blood. 2008; 111:3200–10
Santoro J, Bastos ACSF, Gimba ERP, Emerenciano M. Reinforcing osteopontin as a marker of central nervous system relapse in paediatric B-cell acute lympho-blastic leukaemia: SPP1 splice variant 3 in the spotlight. Br J Haematol. 2019; 186(4):e88-e91. DOI: 10.1111/bjh.15917.
Chen R, Tabeta S. Modeling the long-term fate of polycyclic aromatic hydrocar-bons (PAHs) and public health risk in Bohai Bay Sea Area, China. Mar Pollut Bull. 2023; 190:114872. DOI: 10.1016/j.marpolbul.2023.114872.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Santiago Alvarez-Rivera
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
La Revista Salutem Scientia Spiritus usa la licencia Creative Commons de Atribución – No comercial – Sin derivar: Los textos de la revista son posibles de ser descargados en versión PDF siempre que sea reconocida la autoría y el texto no tenga modificaciones de ningún tipo.