Efectos del cisplatino sobre la masa muscular en personas con cáncer de pulmón.Revisión de la literatura.
Palabras clave:
Cáncer de pulmón, quimioterapia, cisplatino, caquexia, anorexia, sarcopenia.Resumen
El cáncer de pulmón (CP) representa una de las principales causas de mortalidad por cáncer a nivel mundial, con aproximadamente 2.2 millones de casos nuevos y 1.8 millones de muertes en 2020. En el tratamiento de esta enfermedad, el cisplatino es considerado un agente quimioterapéutico de primera línea, destacándose por su efectividad en reducir la carga tumoral. Sin embargo, estudios recientes han revelado que este medicamento puede tener efectos adversos significativos en el tejido muscular, provocando pérdida de peso y mayor riesgo de comorbilidades. En esta revisión de la literatura nosotros encontramos que el cisplatino genera pérdida de masa muscular a través de diferentes mecanismos como: 1. Anorexia; 2. Daño de mucosa gastrointestinal; 3. Incremento de las vías de degradación proteica muscular; 4. Disminución de la síntesis de proteínas musculares; y 5. Reducción de la cantidad de mitocondrias y capilares musculares. Por lo que esta revisión de la literatura concluimos que el cisplatino es capaz de causar disfunción a nivel de músculo esquelético mediante diversos mecanismos, lo que finalmente conduce a los pacientes con CP a sarcopenia o caquexia, provocando en ellos debilidad muscular y menor calidad de vida.
Descargas
Referencias
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3):209-49. DOI: 10.3322/caac.21660
2. Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends. Nature Reviews Clinical Oncology. 2023; 20(9):624-39. DOI: 10.1038/s41571-023-00798-3
3. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J Thorac Oncol. 2015; 10(9):1243-60. DOI: 10.1097/JTO.0000000000000630
4. Schabath MB, Cote ML. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol Biomarkers Prev. 2019; 28(10):1563-79. DOI: 10.1158/1055-9965.EPI-19-0221
5. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021; 71(1):7-33. DOI: 10.3322/caac.21654
6. Cardona AF, Mejía SA, Viola L, Chamorro DF, Rojas L, Ruíz-Patiño A, et al. Lung Cancer in Colombia. Journal of Thoracic Oncology. 2022; 17(8):953-60. DOI: 10.1016/j.jtho.2022.02.015
7. Shukuya T, Takahashi K, Shintani Y, Miura K, Sekine I, Takayama K, et al. Epidemiology, risk factors and impact of cachexia on patient outcome: Results from the Japanese Lung Cancer Registry Study. J Cachexia Sarcopenia Muscle. 2023 ;14(3):1274-85. DOI: 10.1002/jcsm.13216
8. Jensen S, Bloch Z, Quist M, Hansen TTD, Johansen C, Pappot H, et al. Sarcopenia and loss of muscle mass in patients with lung cancer undergoing chemotherapy treatment: a systematic review and meta-analysis. Acta Oncol (Madr). 2023; 62(3):318-28. DOI: 10.1080/0284186X.2023.2180660
9. de Jong C, Chargi N, Herder GJM, van Haarlem SWA, van der Meer F, van Lindert ASR, et al. The association between skeletal muscle measures and chemotherapy-induced toxicity in non-small cell lung cancer patients. J Cachexia Sarcopenia Muscle. 2022; 13(3):1554-64. DOI: 10.1002/jcsm.12967
10. Garcia JM, Dunne RF, Santiago K, Martin L, Birnbaum MJ, Crawford J, et al. Addressing unmet needs for people with cancer cachexia: recommendations from a multistakeholder workshop. J Cachexia Sarcopenia Muscle. 2022; 1;13(2):1418-25. DOI: 10.1002/jcsm.12910
11. Nishikawa H, Goto M, Fukunishi S, Asai A, Nishiguchi S, Higuchi K. Cancer Cachexia: Its Mechanism and Clinical Significance. International Journal of Molecular Sciences 2021, Vol 22, Page 8491. 2021; 22(16):8491. DOI: 10.3390/ijms22168491
12. Damrauer JS, Stadler ME, Acharyya S, Baldwin AS, Couch ME, Guttridge DC. Chemotherapy-induced muscle wasting: association with NF-κB and cancer cachexia. Eur J Transl Myol. 2018; 28(2):158-66. DOI: 10.4081/ejtm.2018.7590
13. Farhang-Sardroodi S, La Croix MA, Wilkie KP. Chemotherapy-induced cachexia and model-informed dosing to preserve lean mass in cancer treatment. PLoS Comput Biol. 2022; 18(3):e1009505. DOI: 10.1371/journal.pcbi.1009505
14. Spira A, Ettinger DS. Multidisciplinary management of lung cancer. N Engl J Med. 2004 ;350(4):379-92. DOI: 10.1056/NEJMra035536
15. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008 ;9(7):629-35. DOI: 10.1016/S1470-2045(08)70153-0
16. Caillet P, Liuu E, Raynaud Simon A, Bonnefoy M, Guerin O, Berrut G, et al. Association between cachexia, chemotherapy and outcomes in older cancer patients: A systematic review. Clinical Nutrition. 2017 ;36(6):1473-82. DOI: 10.1016/j.clnu.2016.12.003
17. Tsukagoshi M, Yokobori T, Yajima T, Maeno T, Shimizu K, Mogi A, et al. Skeletal muscle mass predicts the outcome of nivolumab treatment for non-small cell lung cancer. Medicine (United States). 2020; 99(7). DOI: 10.1097/MD.0000000000019059
18. Neshan M, Tsilimigras DI, Han X, Zhu H, Pawlik TM. Molecular Mechanisms of Cachexia: A Review. Cells 2024, Vol 13, Page 252. 2024; 13(3):252. https://doi.org/10.3390/cells13030252
19. Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014; 740:364-78. Available. DOI: 10.1016/j.ejphar.2014.07.025
20. Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem. 2019; 88. DOI: 10.1016/j.bioorg.2019.102925
21. Ho GY, Woodward N, Coward JIG. Cisplatin versus carboplatin: comparative review of therapeutic management in solid malignancies. Crit Rev Oncol Hematol. 2016; 102:37-46. DOI: 10.1016/j.critrevonc.2016.03.014
22. Shahid F, Farooqui Z, Khan F. Cisplatin-induced gastrointestinal toxicity: An update on possible mechanisms and on available gastroprotective strategies. Eur J Pharmacol. 2018; 15; 827:49-57. DOI: 10.1016/j.ejphar.2018.03.009
23. Le-Rademacher JG, Crawford J, Evans WJ, Jatoi A. Overcoming obstacles in the design of cancer anorexia/weight loss trials. Crit Rev Oncol Hematol. 2017; 117:30-7. DOI: 10.1016/j.critrevonc.2017.06.008
24. Song MY, Ku SK, Kim HJ, Han JS. Low molecular weight fucoidan ameliorating the chronic cisplatin-induced delayed gastrointestinal motility in rats. Food and Chemical Toxicology. 2012; 1; 50(12):4468-78. DOI: 10.1016/j.fct.2012.09.020
25. Vera G, Chiarlone A, Martín MI, Abalo R. Altered feeding behaviour induced by long-term cisplatin in rats. Auton Neurosci [Internet]. 2006; 126-127:81-92. DOI: 10.1016/j.autneu.2006.02.011
26. Churm D, Andrew IM, Holden K, Hildreth AJ, Hawkins C. A questionnaire study of the approach to the anorexia-cachexia syndrome in patients with cancer by staff in a district general hospital. Support Care Cancer. 2009; 17(5):503-7. DOI: 10.1007/s00520-008-0486-1
27. Mitchell EP. Gastrointestinal toxicity of chemotherapeutic agents. Semin Oncol. 2006; 33(1):106-20. DOI: 10.1053/j.seminoncol.2005.12.001
28. Hattori T, Yakabi K, Takeda H. Cisplatin-Induced Anorexia and Ghrelin. Vitam Horm. 2013; 92:301-17. DOI: 10.1016/B978-0-12-410473-0.00012-X
29. Min D, Kim B, Ko SG, Kim W. Effect and Mechanism of Herbal Medicines on Cisplatin-Induced Anorexia. Pharmaceuticals 2022, Vol 15, Page 208. 2022; 15(2):208. DOI: 10.3390/ph15020208
30. Inoue T, Takagi H, Owada Y, Watanabe Y, Yamaura T, Fukuhara M, et al. The efficacy of the Kampo medicine rikkunshito for chemotherapy-induced anorexia (RICH trial): Study protocol for a randomized controlled trial. Trials. 2017; 18(1):1-8. DOI: 10.1186/s13063-017-2227-6
31. Hasler WL. Serotonin and the GI tract. Curr Gastroenterol Rep. 2009; 11(5):383-91. DOI: 10.1007/s11894-009-0058-7
32. Haleem DJ. Serotonin neurotransmission in anorexia nervosa. Behavioural Pharmacology. 2012; 23(5-6):478-95. DOI: 10.1097/FBP.0b013e328357440d
33. Takeda H, Sadakane C, Hattori T, Katsurada T, Ohkawara T, Nagai K, et al. Rikkunshito, an Herbal Medicine, Suppresses Cisplatin-Induced Anorexia in Rats Via 5-HT2 Receptor Antagonism. Gastroenterology. 2008; 134(7):2004-13. DOI: 10.1053/j.gastro.2008.02.078
34. Halford JCG, Harrold JA, Lawton CL, Blundell JE. Serotonin (5-HT) Drugs: Effects on Appetite Expression and Use for the Treatment of Obesity. Curr Drug Targets. 2012; 6(2):201-13. DOI: 10.2174/1389450053174550
35. Saegusa Y, Hattori T, Nahata M, Yamada C, Takeda H. A New Strategy Using Rikkunshito to Treat Anorexia and Gastrointestinal Dysfunction. Evid Based Complement Alternat Med. 2015. DOI: 10.1155/2015/364260
36. Méndez-Sánchez N, Chávez-Tapia NC, Uribe-Esquivel M. La ghrelina y su importancia con el eje gastrohipotalámico. 2006; 142(1).
37. Rubino F, Zizzari P, Tomasetto C, Bluet-Pajot MT, Forgione A, Vix M, et al. The Role of the Small Bowel in the Regulation of Circulating Ghrelin Levels and Food Intake in the Obese Zucker Rat. Endocrinology. 2005; 146(4):1745-51. DOI: 10.1210/en.2004-1181
38. Ohnishi S, Takeda H. Herbal medicines for the treatment of cancer chemotherapy-induced side effects. Front Pharmacol. 2015; 6(FEB). DOI: 10.3389/fphar.2015.00014
39. Hiura Y, Takiguchi S, Yamamoto K, Kurokawa Y, Yamasaki M, Nakajima K, et al. Fall in plasma ghrelin concentrations after cisplatin-based chemotherapy in esophageal cancer patients. Int J Clin Oncol. 2012; 17(4):316-23. DOI: 10.1007/s10147-011-0289-0
40. Ohno T, Yanai M, Ando H, Toyomasu Y, Ogawa A, Morita H, et al. Rikkunshito, a traditional Japanese medicine, suppresses cisplatin-induced anorexia in humans. Clin Exp Gastroenterol. 2011; 4(1):291-6. DOI: 10.2147/CEG.S26297
41. Yakabi K, Sadakane C, Noguchi M, Ohno S, Ro S, Chinen K, et al. Reduced ghrelin secretion in the hypothalamus of rats due to cisplatin-induced anorexia. Endocrinology. 2010; 151(8):3773-82. DOI: 10.1210/en.2010-0061
42. Hebebrand J, Muller TD, Holtkamp K, Herpertz-Dahlmann B. The role of leptin in anorexia nervosa: clinical implications. Mol Psychiatry. 2007; 12(1):23-35. DOI: 10.1038/sj.mp.4001909
43. Woo SM, Choi YK, Kim AJ, Yun YJ, Shin YC, Cho SG, et al. Sip-jeon-dea-bo-tang, a traditional herbal medicine, ameliorates cisplatin-induced anorexia via the activation of JAK1/STAT3-mediated leptin and IL-6 production in the fat tissue of mice. Mol Med Rep. 2016; 13(4):2967-72. DOI: 10.3892/mmr.2016.4889
44. Brennan AM, Mantzoros CS. Drug Insight: the role of leptin in human physiology and pathophysiology--emerging clinical applications. Nat Clin Pract Endocrinol Metab. 2006; 2(6):318-27. DOI: 10.1038/ncpendmet0196
45. Smiechowska J, Utech A, Taffet G, Hayes T, Marcelli M, Garcia JM. Adipokines in patients with cancer anorexia and cachexia. J Investig Med. 2010; 58(3):554-9. DOI: 10.231/JIM.0b013e3181cf91ca
46. Perše M. Cisplatin mouse models: Treatment, toxicity and translatability. Biomedicines. 2021 Oct 1; 9(10):1406. DOI: 10.231/JIM.0b013e3181cf91ca
47. McQuade RM, Stojanovska V, Abalo R, Bornstein JC, Nurgali K. Chemotherapy-induced constipation and diarrhea: Pathophysiology, current and emerging treatments. Front Pharmacol. 2016; 7(NOV):223117. DOI: 10.3389/fphar.2016.00414
48. Vera G, Castillo M, Cabezos PA, Chiarlone A, Martín MI, Gori A, et al. Enteric neuropathy evoked by repeated cisplatin in the rat. Neurogastroenterology and motility. 2011; 23(4):370. DOI: 10.1111/j.1365-2982.2011.01674.x
49. Nardini P, Pini A, Bessard A, Duchalais E, Niccolai E, Neunlist M, et al. GLP-2 Prevents Neuronal and Glial Changes in the Distal Colon of Mice Chronically Treated with Cisplatin. Int J Mol Sci. 2020; 21(22):1-17. DOI: 10.3390/ijms21228875
50. Ebadi M, Mazurak VC. Evidence and mechanisms of fat depletion in cancer. Nutrients. 2014; 6(11):5280-97. DOI: 10.3390/nu6115280
51. Murphy RA, Wilke MS, Perrine M, Pawlowicz M, Mourtzakis M, Lieffers JR, et al. Loss of adipose tissue and plasma phospholipids: relationship to survival in advanced cancer patients. Clin Nutr. 2010; 29(4):482-7. DOI: 10.1016/j.clnu.2009.11.006
52. Kim DS, Scherer PE. Obesity, Diabetes, and Increased Cancer Progression. Diabetes Metab J. 2021; 45(6):799-812. DOI: 10.4093/dmj.2021.0077
53. Desmedt C, Fornili M, Clatot F, Demicheli R, de Bortoli D, Di Leo A, et al. Differential benefit of adjuvant docetaxel-based chemotherapy in patients with early breast cancer according to baseline body mass index. Journal of Clinical Oncology. 2020; 38(25):2883-91. DOI: 10.1200/JCO.19.01771
54. Naumann P, Eberlein J, Farnia B, Liermann J, Hackert T, Debus J, et al. Cachectic Body Composition and Inflammatory Markers Portend a Poor Prognosis in Patients with Locally Advanced Pancreatic Cancer Treated with Chemoradiation. Cancers 2019, Vol 11, Page 1655. 2019; 11(11):1655. DOI: 10.3390/cancers11111655
55. Kays JK, Shahda S, Stanley M, Bell TM, O’Neill BH, Kohli MD, et al. Three cachexia phenotypes and the impact of fat-only loss on survival in FOLFIRINOX therapy for pancreatic cancer. J Cachexia Sarcopenia Muscle. 2018; 9(4):673-84. DOI: 10.1002/jcsm.12307
56. Milliron BJ, Packel L, Dychtwald D, Klobodu C, Pontiggia L, Ogbogu O, et al. When Eating Becomes Torturous: Understanding Nutrition-Related Cancer Treatment Side Effects among Individuals with Cancer and Their Caregivers. Nutrients. 2022; 14(2):356. DOI: 10.3390/nu14020356
57. Lee JW, Lee HS, Na JO, Lee SM. Effect of adipose tissue volume on prognosis in patients with non-small cell lung cancer. Clin Imaging. 2018; 1;50:308-13. DOI: 10.1016/j.clinimag.2018.05.006
58. Garcia JM, Scherer T, Chen JA, Guillory B, Nassif A, Papusha V, et al. Inhibition of cisplatin-induced lipid catabolism and weight loss by ghrelin in male mice. Endocrinology. 2013; 154(9):3118-29. DOI: 10.1210/en.2013-1179
59. Lin YC, Chen L wen, Chen YC, Chan ST, Liao JW, Yeh SL. Quercetin attenuates cisplatin-induced fat loss. Eur J Nutr. 2021; 60(4):1781-93. DOI: 10.1007/s00394-020-02371-5
60. Biondo LA, Batatinha HA, Souza CO, Teixeira AAS, Silveira LS, Alonso-Vale MI, et al. Metformin mitigates fibrosis and glucose intolerance induced by doxorubicin in subcutaneous adipose tissue. Front Pharmacol. 2018; 9(MAY):355047. DOI: 10.3389/fphar.2018.00452
61. Klose R, Krzywinska E, Castells M, Gotthardt D, Putz EM, Kantari-Mimoun C, et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nature Communications 2016 7:1. 2016; 7(1):1-14. DOI: 10.1038/ncomms12528
62. Moreno-Vedia J, Girona J, Ibarretxe D, Masana L, Rodríguez-Calvo R. Unveiling the Role of the Fatty Acid Binding Protein 4 in the Metabolic-Associated Fatty Liver Disease. Biomedicines 2022, Vol 10, Page 197. 2022; 10(1):197. DOI: 10.3390/biomedicines10010197
63. Icard P, Schussler O, Loi M, Bobbio A, Lupo AM, Wislez M, et al. Pre-Disease and Pre-Surgery BMI, Weight Loss and Sarcopenia Impact Survival of Resected Lung Cancer Independently of Tumor Stage. Cancers (Basel). 2020; 12(2). DOI: 10.3390/cancers12020266
64. Petrelli F, Cortellini A, Indini A, Tomasello G, Ghidini M, Nigro O, et al. Association of Obesity With Survival Outcomes in Patients With Cancer: A Systematic Review and Meta-analysis. JAMA Netw Open. 2021; 4(3). DOI: 10.1001/jamanetworkopen.2021.3520
65. Sutandyo N, Hanafi AR, Jayusman AM, Kurniawati SA, Hanif MA. Overweight and Obesity are Associated with Poorer Survival Among Patients with Advanced Non-Small Cell Lung Cancer Receiving Platinum-Based Chemotherapy. Int J Gen Med. 2023; 16:85-93. DOI: 10.2147/IJGM.S382577
66. Acharyya S, Butchbach MER, Sahenk Z, Wang H, Saji M, Carathers M, et al. Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell. 2005; 8(5):421-32. DOI: 10.1016/j.ccr.2005.10.004
67. Berardi E. Muscular Dystrophies and Cancer Cachexia: Similarities in Chronic Skeletal Muscle Degeneration. Journal of Functional Morphology and Kinesiology 2017, Vol 2, Page 39. 2017; 2(4):39. DOI: 10.3390/jfmk2040039
68. Garcia JM, Cata JP, Dougherty PM, Smith RG. Ghrelin prevents cisplatin-induced mechanical hyperalgesia and cachexia. Endocrinology. 2008; 149(2):455-60. DOI: 10.1210/en.2007-0828
69. Dickey DT, Muldoon LL, Doolittle ND, Peterson DR, Kraemer DF, Neuwelt EA. Effect of N-acetylcysteine route of administration on chemoprotection against cisplatin-induced toxicity in rat models. Cancer Chemother Pharmacol. 2008; 62(2):235-41. DOI: 10.1007/s00280-007-0597-2
70. Sakai H, Sagara A, Arakawa K, Sugiyama R, Hirosaki A, Takase K, et al. Mechanisms of cisplatin-induced muscle atrophy. Toxicol Appl Pharmacol. 2014 Jul 15;278(2):190-9. DOI: 10.1016/j.taap.2014.05.001
71. Bresciani E, Rizzi L, Molteni L, Ravelli M, Liantonio A, Ben Haj Salah K, et al. JMV2894, a novel growth hormone secretagogue, accelerates body mass recovery in an experimental model of cachexia. Endocrine. 2017; 58(1):106-14. DOI: 10.1007/s12020-016-1184-2
72. Conte E, Camerino GM, Mele A, De Bellis M, Pierno S, Rana F, et al. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia. J Cachexia Sarcopenia Muscle. 2017; 8(3):386-404. DOI: 10.1002/jcsm.12185
73. Conte E, Bresciani E, Rizzi L, Cappellari O, De Luca A, Torsello A, et al. Cisplatin-Induced Skeletal Muscle Dysfunction: Mechanisms and Counteracting Therapeutic Strategies. International Journal of Molecular Sciences 2020, Vol 21, Page 1242. 2020; 21(4):1242. DOI: 10.3390/ijms21041242
74. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011; 12(5):489-95. DOI: 10.1016/S1470-2045(10)70218-7
75. Nicolini A, Ferrari P, Masoni MC, Fini M, Pagani S, Giampietro O, et al. Malnutrition, anorexia and cachexia in cancer patients: A mini-review on pathogenesis and treatment. Biomed Pharmacother. 2013; 67(8):807-17. DOI: 10.1016/j.biopha.2013.08.005
76. Khalil R. Ubiquitin-Proteasome Pathway and Muscle Atrophy. Adv Exp Med Biol. 2018; 1088:235-48. DOI: 10.1007/978-981-13-1435-3_10
77. Zhang Y, Gan B, Liu D, Paik JH. FoxO family members in cancer. Cancer Biol Ther. 2011; 12(4):253-9. DOI: 10.4161/cbt.12.4.15954
78. Penna F, Costamagna D, Fanzani A, Bonelli G, Baccino FM, Costelli P. Muscle Wasting and Impaired Myogenesis in Tumor Bearing Mice Are Prevented by ERK Inhibition. PLoS One. 2010; 5(10):e13604. DOI: 10.1371/journal.pone.0013604
79. Cai D, Frantz JD, Tawa NE, Melendez PA, Oh BC, Lidov HGW, et al. IKKβ/NF-κB activation causes severe muscle wasting in mice. Cell. 2004; 119(2):285-98. DOI: 10.1016/j.cell.2004.09.027
80. Li H, Malhotra S, Kumar A. Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med. 2008 Oct 24; 86(10):1113-26. DOI: 10.1007/s00109-008-0373-8
81. Clark BC, Manini TM. Sarcopenia ≠ Dynapenia. The Journals of Gerontology: Series A. 2008; 63(8):829-34. DOI: 10.1093/gerona/63.8.829
82. Kodera Y. More than 6 months of postoperative adjuvant chemotherapy results in loss of skeletal muscle: a challenge to the current standard of care. Gastric Cancer. 2015; 18(2):203-4. DOI: 10.1007/s10120-014-0381-z
83. Gammeren D, Damrauer JS, Jackman RW, Kandarian SC. The IkappaB kinases IKKalpha and IKKbeta are necessary and sufficient for skeletal muscle atrophy. FASEB J. 2009; 23(2):362-70. DOI: 10.1096/fj.08-114249
84. Gilliam LAA, Moylan JS, Ferreira LF, Reid MB. TNF/TNFR1 signaling mediates doxorubicin-induced diaphragm weakness. Am J Physiol Lung Cell Mol Physiol. 2011; 300(2). DOI: 10.1152/ajplung.00264.2010
85. Gilliam LAA, Moylan JS, Callahan LA, Sumandea MP, Reid MB. Doxorubicin causes diaphragm weakness in murine models of cancer chemotherapy. Muscle Nerve. 2011; 43(1):94-102. DOI: 10.1002/mus.21809
86. Chen JA, Splenser A, Guillory B, Luo J, Mendiratta M, Belinova B, et al. Ghrelin prevents tumour- and cisplatin-induced muscle wasting: characterization of multiple mechanisms involved. J Cachexia Sarcopenia Muscle. 2015; 6(2):132-43. DOI: 10.1002/jcsm.12023
87. Gilliam LAA, St. Clair DK. Chemotherapy-induced weakness and fatigue in skeletal muscle: the role of oxidative stress. Antioxid Redox Signal. 2011; 15(9):2543-63. DOI: 10.1089/ars.2011.3965
88. Chen JL, Colgan TD, Walton KL, Gregorevic P, Harrison CA. The TGF-β Signalling Network in Muscle Development, Adaptation and Disease. Adv Exp Med Biol. 2016; 900:97-131. DOI: 10.1007/978-3-319-27511-6_5
89. Barreto R, Waning DL, Gao H, Liu Y, Zimmers TA, Bonetto A. Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. Oncotarget. 2016; 7(28):43442-60. DOI: 10.18632/oncotarget.9779
90. Ederer AK, Didier KD, Reiter LK, Brown M, Hardy R, Caldwell J, et al. Influence of Adjuvant Therapy in Cancer Survivors on Endothelial Function and Skeletal Muscle Deoxygenation. PLoS One. 2016; 11(1). DOI: 10.1371/journal.pone.0147691
91. Davis MP, Panikkar R. Sarcopenia associated with chemotherapy and targeted agents for cancer therapy. Ann Palliat Med. 2019; 8(1):8601-8101. doi: 10.21037/apm.2018.08.02
92. Go S Il, Park MJ, Song HN, Kang MH, Park HJ, Jeon KN, et al. Sarcopenia and inflammation are independent predictors of survival in male patients newly diagnosed with small cell lung cancer. Supportive Care in Cancer. 2016; 24(5):2075-84. DOI: 10.1007/s00520-015-2997-x
93. Del Fabbro E, Parsons H, Warneke CL, Pulivarthi K, Litton JK, Dev R, et al. The relationship between body composition and response to neoadjuvant chemotherapy in women with operable breast cancer. Oncologist. 2012; 17(10):1240-5. DOI: 10.1634/theoncologist.2012-0169
94. Mir O, Coriat R, Blanchet B, Durand JP, Boudou-Rouquette P, Michels J, et al. Sarcopenia predicts early dose-limiting toxicities and pharmacokinetics of sorafenib in patients with hepatocellular carcinoma. PLoS One. 2012; 7(5). DOI: 10.1371/journal.pone.0037563
95. Baracos V, Kazemi-Bajestani SMR. Clinical outcomes related to muscle mass in humans with cancer and catabolic illnesses. Int J Biochem Cell Biol. 2013; 45(10):2302-8. DOI: 10.1016/j.biocel.2013.06.016
96. Antoun S, Baracos VE, Birdsell L, Escudier B, Sawyer MB. Low body mass index and sarcopenia associated with dose-limiting toxicity of sorafenib in patients with renal cell carcinoma. Ann Oncol. 2010; 21(8):1594-8. DOI: 10.1093/annonc/mdp605
97. Prado CMM, Baracos VE, McCargar LJ, Mourtzakis M, Mulder KE, Reiman T, et al. Body composition as an independent determinant of 5-fluorouracil-based chemotherapy toxicity. Clin Cancer Res. 2007; 13(11):3264-8. DOI: 10.1158/1078-0432.CCR-06-3067
98. Lin JF, Lin YC, Tsai TF, Chen HE, Chou KY, Hwang TIS. Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells. Drug Des Devel Ther. 2017; 11:1517-33. DOI: 10.2147/DDDT.S126464
99. Inapurapu S, Kudle KR, Bodiga S, Bodiga VL. Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae. Iran J Basic Med Sci. 2017; 20(1):83-9. DOI: 10.22038/ijbms.2017.8099
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Camilo Morales-Jiménez, Laura Tapasco-Velásquez, Luis Ignacio Vela-Ortiz

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
La Revista Salutem Scientia Spiritus usa la licencia Creative Commons de Atribución – No comercial – Sin derivar: Los textos de la revista son posibles de ser descargados en versión PDF siempre que sea reconocida la autoría y el texto no tenga modificaciones de ningún tipo.