Sustitutos sanguíneos como alternativa a la donación de células sanguíneas.

Autores/as

Palabras clave:

Sangre, transfusión, sustituto, hemo, donación.

Resumen

Las transfusiones de sangre son esenciales para pacientes con diversas condiciones médicas, pero los glóbulos rojos obtenidos por medio de donación de sangre tienen una vida útil limitada de 42 días, lo que reduce su disponibilidad. A nivel mundial, hay una escasez significativa frente a la demanda. Factores como salud, falta de información y creencias personales dificultan la donación. Lo que ha impulsado a la comunidad científica a diseñar sustitutos sintéticos para suplir la demanda de sangre principalmente para dos funciones esenciales de la sangre: el transporte de oxígeno por los glóbulos rojos y la hemostasia por las plaquetas, enfocándose particularmente en asegurar el transporte de oxígeno hacia los tejidos. Aunque se han logrado avances significativos y se han realizado experimentos prometedores, estos métodos aún no se utilizan clínicamente en su totalidad.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Juanita Nur-Herrera, Universidad Pontificia Bolivariana (Colombia)

    Estudiante de Medicina.

Referencias

1. World Health Organization. Towards 100% voluntary blood donation: a global framework for action. Geneva: World Health Organization; 2010. p. 1-12.

2. Getie A, Amlak BT, Ayenew T, Gedfew M, Yilak G, Wondmieneh A, et al. Ethiopian residents' knowledge and attitude towards blood donation and its associated factors: systematic review and meta-analysis. BMC Public Health. 2024; 24(1):3256. DOI:10.1186/s12889-024-20679-3.

3. Kim-Shapiro DB, Lee J, Gladwin MT. Storage lesion: role of red blood cell breakdown. Transfusion. 2011; 51(4):844-51. DOI:10.1111/j.1537-2995.2011.03100.x.

4. Malsby RF 3rd, Quesada J, Powell-Dunford N, Kinoshita R, Kurtz J, Gehlen W, et al. Prehospital blood product transfusion by U.S. Army MEDEVAC during combat operations in Afghanistan: a process improvement initiative. Mil Med. 2013; 178(7):785-91. DOI:10.7205/MILMED-D-13-00047.

5. Griffin D, Grace D, O’Cass A. Blood donation: comparing individual characteristics, attitudes, and feelings of donors and nondonors. Health Mark Q. 2014; 31(3):197-212. DOI:10.1080/07359683.2014.936276.

6. Karacan E, Seval GC, Aktan Z, Ayli M, Palabiyikoglu R. Blood donors and factors impacting the blood donation decision: motives for donating blood in Turkish sample. Transfus Apher Sci. 2013; 49(3):468-73. DOI:10.1016/j.transci.2013.04.044.

7. Salaudeen AG, Odeh E. Knowledge and behavior towards voluntary blood donation among students of a tertiary institution in Nigeria. Niger J Clin Pract. 2011; 14(3):303-7. DOI:10.4103/1119-3077.86773.

8. Lund TC, Hume H, Allain JP, McCullough J, Dzik W. The blood supply in Sub-Saharan Africa: needs, challenges, and solutions. Transfus Apher Sci. 2013; 49(3):416-21. DOI:10.1016/j.transci.2013.06.014.

9. Burzynski ES, Nam SL, Le Voir R. Barriers and motivations to voluntary blood donation in sub-Saharan African settings: a literature review. ISBT Sci Ser. 2016; 11(2):99-104. DOI:10.1111/voxs.12271.

10. Ogundeji SP, Ajayi OD, Busari OE, Ogundeji OA, Adepoju OA, Esan FG. Knowledge, attitude, and perception towards voluntary blood donation among university students in Nigeria. ISBT Sci Ser. 2021; 16(1):85-91. DOI:10.1111/voxs.12614.

11. Huis in 't Veld EMJ, de Kort WLAM, Merz EM. Determinants of blood donation willingness in the European Union: a cross-country perspective on perceived transfusion safety, concerns, and incentives. Transfusion. 2019; 59(5):1783-93. DOI:10.1111/trf.15209.

12. Ou-Yang J, Bei CH, He B, et al. Factors influencing blood donation: a cross-sectional survey in Guangzhou, China. Transfus Med. 2017; 27(6):408-14. DOI:10.1111/tme.12435.

13. Mussema A, Bawore SG, Abebaw T, et al. Voluntary blood donation knowledge, attitude, and practice among adult populations of Hosanna Town, South Ethiopia: a community-based cross-sectional study. Front Public Health. 2023; 11:1141544. DOI:10.3389/fpubh.2023.1141544.

14. Kresie L. Artificial blood: an update on current red cell and platelet substitutes. Proc (Bayl Univ Med Cent). 2001; 1 4(2):158-61. DOI:10.1080/08998280.2001.11927754.

15. Sharma R, Kashyap M, Zayed H, Krishnia L, Kashyap MK. Artificial blood—hope and the challenges to combat tumor hypoxia for anti-cancer therapy. Med Biol Eng Comput. 2025; 63(5):933-57. DOI:10.1007/s11517-024-03233-6.

16. Sarkar S. Artificial blood. Indian J Crit Care Med. 2008; 12(3):140-4. DOI:10.4103/0972-5229.43691.

17. Kim HW, Greenburg AG. Artificial oxygen carriers as red blood cell substitutes: a selected review and current status. Artif Organs. 2004; 28(9):813-28. DOI:10.1111/j.1525-1594.2004.07504.x.

18. Haldar R, Gupta D, Chitranshi S, Singh MK, Sachan S. Artificial blood: a futuristic dimension of modern day transfusion sciences. Cardiovasc Hematol Agents Med Chem. 2019; 17(1):11-6. DOI:10.2174/1871525717666190514111112.

19. Yamada K, Yokomaku K, Kureishi M, Akiyama M, Kihira K, Komatsu T. Artificial blood for dogs. Sci Rep. 2016; 6:36782. DOI:10.1038/srep36782.

20. Gao M, Liang C, Song X, Chen Q, Jin Q, Wang C, et al. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv Mater. 2017; 29(35):1701429. DOI:10.1002/adma.201701429.

21. Alayash AI. Blood substitutes: why haven’t we been more successful? Trends Biotechnol. 2014; 32(4):177-85. DOI:10.1016/j.tibtech.2014.01.001.

22. Fernandez-Moure JS, Maisha N, Lavik EB, et al. The chemistry of lyophilized blood products. Bioconjug Chem. 2018; 29(7):2150-60. DOI:10.1021/acs.bioconjchem.8b00194.

23. Franks F. Freeze-drying of bioproducts: putting principles into practice. Eur J Pharm Biopharm. 1998; 45(3):221-9. DOI:10.1016/S0939-6411(98)00041-4.

24. Dowd S, Sharo C, Abdulmalik O, Elmer J. Optimizing the lyophilization of Lumbricus terrestris erythrocruorin. Artif Cells Nanomed Biotechnol. 2024; 52(1):291-9. DOI:10.1080/21691401.2023.2289016.

25. Zal F, Rousselot M. Annelid haemoglobin lyophilisation process. European Patent Office; 2018. EP3214567A1.

26. Cannon JW. Hemorrhagic shock. N Engl J Med. 2018; 378(4):370-9. DOI:10.1056/NEJMra1705649.

27. Kawaguchi AT, Fukumoto D, Haida M, et al. Liposome-encapsulated hemoglobin reduces the size of cerebral infarction in the rat. Stroke. 2007; 38(5):1626-32. DOI:10.1161/STROKEAHA.106.467290.

28. Johnson JLH. Neuroprotective therapy for stroke and ischemic disease. Cham: Springer International Publishing; 2017. DOI:10.1007/978-3-319-45345-3.

29. Johnson JLH, Unger E. Dodecafluoropentane emulsion as an oxygen therapeutic. Artif Cells Nanomed Biotechnol. 2024; 52(1):462-75. DOI:10.1080/21691401.2024.2402908.

30. Lin J, Chen S, Zhang C, Liao J, Chen Y, Deng S, et al. Recent advances in microfluidic technology of arterial thrombosis investigations. Platelets. 2024; 35(1):2316743. DOI:10.1080/09537104.2024.2316743.

31. Garg S, Heuck G, Ip S, Ramsay E. Microfluidics: a transformational tool for nanomedicine development and production. J Drug Target. 2016; 24(6):821-35. DOI:10.3109/1061186X.2015.1122143.

32. Ku CJ, D’Amico Oblak T, Spence DM. Interactions between multiple cell types in parallel microfluidic channels: monitoring platelet adhesion to an endothelium in the presence of an anti-adhesion drug. Anal Chem. 2008; 80(19):7543-8. DOI:10.1021/ac801156c.

33. Lundgren CE, Bergoe GW, Tyssebotn IM. Intravascular fluorocarbon-stabilized microbubbles protect against fatal anemia in rats. Artif Cells Blood Substit Immobil Biotechnol. 2006; 34(5):473-86. DOI:10.1080/10731190600868001.

34. Lundgren C, Tyssebotn I. Development of a minimal-bulk oxygen delivery product to enhance survival during hemorrhagic shock/studies regarding the use of perfluorocarbon-derived intravascular microbubbles for oxygen transport. Fort Belvoir (VA): Defense Technical Information Center; 2009.

35. Fitzgerald RT, Ou X, Nix JS, et al. Dodecafluoropentane emulsion delays and reduces MRI markers of infarction in a rat stroke model: a preliminary report. Magn Reson Imaging. 2015; 33(2):236-9. DOI:10.1016/j.mri.2014.10.013.

36. Culp WC, Woods SD, Skinner RD, et al. Dodecafluoropentane emulsion decreases infarct volume in a rabbit ischemic stroke model. J Vasc Interv Radiol. 2012; 23(1):116-21. DOI:10.1016/j.jvir.2011.09.027.

37. Brown AT, Arthur MC, Nix JS, et al. Dodecafluoropentane emulsion (DDFPe) decreases stroke size and improves neurological scores in a permanent occlusion rat stroke model. Open Neurol J. 2014; 8:27-33. DOI:10.2174/1874205X01408010027.

38. Costa PF, Albers HJ, Linssen JEA, Middelkamp HHT, van der Hout L, Passier R, et al. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data. Lab Chip. 2017; 17(16):2785-92. DOI:10.1039/C7LC00577J.

39. Liu ZL, Ku DN, Aidun CK. Mechanobiology of shear-induced platelet aggregation leading to occlusive arterial thrombosis: a multiscale in silico analysis. J Biomech. 2021; 120:110349. DOI:10.1016/j.jbiomech.2021.110349.

40. Gracka M, Lima R, Miranda JM, Student S, Melka B, Ostrowski Z. Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: a CFD model validation. Comput Methods Programs Biomed. 2022; 226:107117. DOI:10.1016/j.cmpb.2022.107117.

Descargas

Publicado

2025-07-04

Cómo citar

Sustitutos sanguíneos como alternativa a la donación de células sanguíneas. (2025). Salutem Scientia Spiritus, 11(1), 104-109. http://revistas.javerianacali.edu.co/index.php/salutemscientiaspiritus/article/view/1723