El rol del eje cerebro-intestino en las enfermedades neurodegenerativas

Autores/as

Palabras clave:

Eje cerebro-intestino, Microbiota intestinal, Disbiosis, Enfermedades neurodegenerativas, Parkinson, Alzheimer, Epilepsia

Resumen

En los últimos años se ha investigado fuertemente el papel de la microbiota del tracto digestivo y su relación con el sistema nervioso central, en el denominado eje intestino-cerebro, que establece interacciones de manera bidireccional. Los estudios científicos han proporcionado datos que contribuyen a la comprensión de este eje, que parece mantenerse a través de la vinculación vía nervio vago y a través de la vía circulatoria, por las cuales pueden liberarse y difundir neurotransmisores, hormonas, citoquinas y otros metabolitos, entre ellos toxinas. Estos sistemas de comunicación se ven determinados por la composición de la microbiota y a su vez, la composición de la misma se ve afectada por procesos centrales. Todos estos procesos incluyen al sistema inmunológico, que interactúa íntimamente con el sistema nervioso entérico y el intestino. Aunque se trata de mecanismos que no han sido totalmente dilucidados, este eje se postula como una posible base patógena para numerosos trastornos neurológicos de gran impacto, como la enfermedad de Alzheimer, la enfermedad de Parkinson y la epilepsia. Esta revisión recoge información sobre estudios recientes que apoyan y aportan a la descripción de la participación del eje cerebro-intestino en la aparición de estas entidades neurodegenerativas.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Nicolás Yory-Montalvo, Pontificia Universidad Javeriana Cali (Colombia)

Estudiante de Medicina, Semillero de Innovadores en Salud ISSEM.

Myriam-Alejandra Villaraga-Galvis, Pontificia Universidad Javeriana Cali (Colombia)

Estudiante de Medicina, Semillero de Innovadores en Salud ISSEM.

Ana-María Vargas-Ramírez, Pontificia Universidad Javeriana Cali (Colombia)

Estudiante de Medicina, Semillero de Innovadores en Salud ISSEM.

Lina Becerra, Pontificia Universidad Javeriana Cali (Colombia)

Médica, Magíster en Ciencias Biomédicas, Doctora en Ciencias Biomédicas, Profesora Departamento de Ciencias Básicas de la Salud.

Citas

Collins S, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012; 10(11):735-42. DOI: 10.1038/nrmicro2876.

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464(7285):59-65. DOI: 10.1038/nature08821.

Houghteling PD, Walker WA. Why Is Initial Bacterial Colonization of the Intestine Important to Infantsʼ and Childrenʼs Health? J Pediatr Gastroenterol Nutr. 2015; 60(3):294-307. DOI: 10.1097/MPG.0000000000000597

Pärnänen K, Karkman A, Hultman J, Lyra C, Bengtsson-Palme J, Larsson D et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat Commun. 2018; 9(1):3891. DOI: 10.1038/s41467-018-06393-w

Funkhouser L, Bordenstein S. Mom Knows Best: The Universality of Maternal Microbial Transmission.PLoS Biol. 2013; 11(8):e1001631. DOI: 10.1371/journal.pbio.1001631

Li B, Selmi C, Tang R, Gershwin M, Ma X. The microbiome and autoimmunity: a paradigm from the gut-liver axis. Cellular & Molecular Immunology. 2018; 15(6):595-609. DOI: 10.1038/cmi.2018.7

Spielman L, Gibson D, Klegeris A. Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochemistry International. 2018; 120:149-163. DOI: 10.1016/j.neuint.2018.08.005

Ghaisas S, Maher J, Kanthasamy A. Gut microbiome in health and disease: Linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther. 2016; 158:52-62. DOI: 10.1016/j.pharmthera.2015.11.012.

Tognini P. Gut Microbiota: A Potential Regulator of Neurodevelopment. Frontiers in Cellular Neuroscience. 2017; 11:25.DOI: 10.3389/fncel.2017.00025

Bonaz BL, Bernstein CN. Brain-gut interactions in inflammatory bowel disease. Gastroenterology. 2013; 144(1). DOI: 10.1053/j.gastro.2012.10.003.

S. Cussotto, K.V. Sandhu, T.G. Dinan, J.F. Cryan, The Neuroendocrinology of the Microbiota-Gut-Brain Axis: A Behavioural Perspective Front Neuroendocrinol. 2018; 51:80-101. DOI: 10.1016/j.yfrne.2018.04.002

Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Frontiers in Physiology. 2011; 7:2:94. DOI: 10.3389/fphys.2011.00094

Sampson TR, Mazmanian SK. Control of Brain Development, Function, and Behavior by the Microbiome. Cell Host & Microbe. 2015; 17(5):565-76. DOI: doi: 10.1016/j.chom.2015.04.011.

Pavlov VA, Tracey KJ. Neural circuitry and immunity. Immunologic research. 2015; 63(1-3):38-57. DOI: 10.1007/s12026-015-8718-1.

Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain, behavior, and immunity. 2011; 25(3):397-407. DOI: 10.1016/j.bbi.2010.10.023

Williams BB, Van Benschoten AH, Cimermancic P, Donia MS, Zimmermann M, Taketani M, et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell host & microbe. 2014; 16(4):495-503. DOI: 10.1016/j.chom.2014.09.001.

Barbieri F, Montanari C, Gardini F, Tabanelli G. Biogenic Amine Production by Lactic Acid Bacteria: A Review. Foods. 2019; 8(1):17) DOI: 10.3390/foods8010017

Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ‐Aminobutyric acid production by culturable bacteria from the human intestine. Journal of Applied Microbiology. 2012; 113(2):411-7. DOI: 10.1111/j.1365-2672.2012.05344.x.

Malinova T, Dijkstra C, de Vries H. Serotonin: A mediator of the gut-brain axis in multiple sclerosis. Multiple Sclerosis Journal. 2017; 24(9):1144-1150. DOI: 10.1177/1352458517739975.

Macfarlane, Macfarlane. Bacteria, Colonic Fermentation, and Gastrointestinal Health. Journal of AOAC INTERNATIONAL. 2019; 95(1):50-60. DOI: 10.5740/jaoacint.sge_macfarlane.

Nøhr M, Egerod K, Christiansen S, Gille A, Offermanns S, Schwartz T et al. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience. 2015; 290:126-137. DOI: 10.1016/j.neuroscience.2015.01.040.

Stilling R, van de Wouw M, Clarke G, Stanton C, Dinan T, Cryan J. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?. Neurochemistry International. 2016; 99:110-132. DOI: 10.1016/j.neuint.2016.06.011.

Erny, de Angelis H, Jaitin, Wieghofer, Staszewski, David, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience. 2015; 18(7):965-77. DOI:10.1038/nn.4030.

Morrison D, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016; 7(3):189-200. DOI: 10.1080/19490976.2015.1134082.

Viggiano, D.; Ianiro, G.; Vanella, G.; Bibbò, S.; Bruno, G.; Simeone, G.; Mele, G. Gut barrier in health and disease: Focus on childhood. Eur Rev Med Pharmacol. Sci. 2015; 9:1077-1085.

Holtzman DM, Morris JC, Goate AM. Alzheimer’s disease: the challenge of the second century. Science translational medicine. 2011; 3(77):77sr1. DOI: 10.1126/scitranslmed.3002369

Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL et al. Neuroinflammation in Alzheimer’s disease. The Lancet Neurology. 2015; 14(4):388-405. DOI: 10.1016/S1474-4422(15)70016-5.

Sun M, Ma K, Wen J, Wang G, Zhang C, Li Q, et al. A Review of the Brain-Gut-Microbiome Axis and the Potential Role of Microbiota in Alzheimer’s Disease - PubMed. Journal of Alzheimer’s disease. 2020; 73(3). DOI: 10.3233/JAD-190872.

Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut microbes. 2020; 11(2):135-57. DOI: 10.1080/19490976.2019.1638722

Huang Z, Wong L-W, Su Y, Huang X, Wang N, Chen H, et al. Blood-brain barrier integrity in the pathogenesis of Alzheimer’s disease. Frontiers in neuroendocrinology. 2020. 1;59. DOI:10.1016/j.yfrne.2020.100857.

Profaci CP, Munji RN, Pulido RS, Daneman R. The blood-brain barrier in health and disease: Important unanswered questions. The Journal of experimental medicine. 2020; 217(4):e20190062. DOI: 10.1084/jem.20190062

Vogt K, Dill-McFarland H, Merluzzi J et al. Gut microbiome alterations in Alzheimer’s disease. Scientific Reports. 2017; 7(1):1-11. DOI: doi.org/10.1038/s41598-017-13601-y

Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM et al. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice. Diabetes. 2008; 57(6):1470-81. DOI: 10.2337/db07-1403

Long-Smith, C., O’Riordan, K.J., Clarke, G., Stanton, C., Dinan, T.G., Cryan, J.F., 2020. Microbiota-gut-brain axis: new therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 60:477-502. DOI: 10.1146/annurev-pharmtox-010919-023628

Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z et al. Blood-Brain Barrier Breakdown in the Aging Human Hippocampus. Neuron. 2015; 85(2):296-302. DOI: 10.1016/j.neuron.2014.12.032.

Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nature Communications. 2013; 4:2932 DOI: 10.1038/ncomms3932

Nishitsuji K, Hosono T, Nakamura T, Bu G, Michikawa M. Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain barrier model. The Journal of biological chemistry. 2011; 286(20):17536-42. DOI: 10.1074/jbc.M111.225532

Nation M, Barisano S, Chakhoyan S et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature. 2020; 581(7806):71-6. DOI: 10.1038/s41586-020-2247-3

Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging. 2017; 49:60-68. DOI: 10.1016/j.neurobiolaging.2016.08.019.

Möhle L, Mattei D, Heimesaat MM, Bereswill S, Fischer A, Alutis M, et al. Ly6Chi Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. Cell Reports. 2016; 15(9):1945-56. DOI: 10.1016/j.celrep.2016.04.074

Distrutti E, O’Reilly J-A, McDonald C, Cipriani S, Renga B, Lynch MA, et al. Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP. PloS one. 2014; 9(9):e106503 DOI: 10.1371/journal.pone.0106503

Kim M-S, Kim Y, Choi H, Kim W, Park S, Lee D et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut. 2020; 69(2):283-94. DOI: 10.1136/gutjnl-2018-317431

Mulak A, Bonaz B. Brain-gut-microbiota axis in Parkinson’s disease. World journal of gastroenterology. 2015; 21:10609-10620. DOI: 10.3748/wjg.v21.i37.10609

Vascellari S, Palmas V, Melis M et al. Gut Microbiota and Metabolome Alterations Associated with Parkinson’s Disease. mSystems. 2020; 5 DOI: 10.1128/msystems.00561-20

Forsyth CB, Shannon KM, Kordower JH et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One. 2011; 6:e28032. DOI: 10.1371/journal.pone.0028032

Scheperjans F, Aho V, Pereira PA et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord. 2015; 30:350-358. DOI: 10.1002/mds.26069

Keshavarzian A, Green SJ, Engen PA, et al. Colonic bacterial composition in Parkinson’s disease. Mov Disord. 2015; 30:1351-1360. DOI: 10.1002/mds.26307

Unger MM, Spiegel J, Dillmann KU et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord. 2016; 32:66-72. DOI: 10.1016/j.parkreldis.2016.08.019

Fasano A, Bove F, Gabrielli M et al. The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord. 2013; 28:1241-1249. DOI: 10.1002/mds.25522

Li W, Wu X, Hu X, et al. Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features. Sci China Life Sci. 2017; 60(11):1223-1233. DOI: 10.1007/s11427-016-9001-4.

Bedarf JR, Hildebrand F, Coelho LP et al. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients. Genome Med. 2017; 9:39. DOI: 10.1186/s13073-017-0428-y

Tetz G, Brown SM, Hao Y et al. Parkinson’s disease and bacteriophages as its overlooked contributors. Sci Rep. 2018; 8:10812. DOI: 10.1038/s41598-018-29173-4

Lin A, Zheng W, He Y et al. Gut microbiota in patients with Parkinson’s disease in southern China. Parkinsonism Relat Disord. 2018; 53:82-88. DOI: 10.1016/j.parkreldis.2018.05.007

Ngugi AK, Kariuki SM, Bottomley C et al. Incidence of epilepsy. A systematic review and meta-analysis. Neurology. 2011; 77: 1005-12. DOI: 10.1212/WNL.0b013e31822cfc90.

Faught E, Duh MS, Weiner JR, et al. Adherence to antiepileptic drugs and increased mortality. Findings from the RANSOM Study. Neurology. 2008; 71:1572-8. DOI: 10.1212/01.wnl.0000319693.10338.b9

Wang HX, Wang YP. Gut microbiota-brain axis. Chinese Medicine Journal (Engl). 2016; 129 (19): 2373-2380. DOI: doi: 10.4103/0366-6999.190667.

4.Riazi K, Galic MA, Pittman QJ. Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability. Epilepsy Research. 2010; 89(1):34-42. DOI: 10.1016/j.eplepsyres.2009.09.004.

Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biology Psychiatry. 2013; 74: 720-6. DOI: 10.1016/j.biopsych.2013.05.001

Dinan TG, Cryan JF. The microbiome-gut-brain axis in health and disease. Gastroenterology Clinics North America. 2017; 46: 77-89. DOI: 10.1016/j.gtc.2016.09.007

CA Olson et al. The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell. 2018; 173(7):1728-1741.e13 DOI: 10.3390/nu14010191

Quirino A, Russo R, Calignano A, Constanti A et al. First evidence of altered microbiota and intestinal damage and their link to absence epilepsy in a genetic animal model, the WAG/Rij rat. Epilepsia. 62(2), 529-541. DOI: 10.1111/epi.16813

Gómez-Eguílaz M, Ramón-Trapero JL, Pérez-Martínez L et al. The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: a pilot study. Benef Microbes. 2018; 9:875-881. DOI: 10.3920/BM2018.0018.

Bagheri S, Heydari A, Alinaghipour A, Salami M. Effect of probiotic supplementation on seizure activity and cognitive performance in PTZ-induced chemical kindling. Epilepsy Behaviour 2019; 95:43-50. DOI: 10.1016/j.yebeh.2019.03.038

Tahmasebi S, Oryan S, Mohajerani HR, Akbari N, Palizvan MR. Probiotics and Nigella sativa extract supplemented improved behavioral and electrophysiological effects of PTZ-induced chemical kindling in rats. Epilepsy Behaviour. 2020; 104:106897. DOI: 10.1016/j.yebeh.2019.106897

Smaga I, Fierro D, Mesa J, Filip M, Knackstedt LA. Molecular changes evoked by the beta-lactam antibiotic ceftriaxone across rodent models of substance use disorder and neurological disease. Neuroscience Biobehavioral Review. 2020; 115:116-30. DOI: 10.1016/j.neubiorev.2020.05.016.

Welzel L, Bergin DH, Schidlitzki A, et al. Systematic evaluation of rationally chosen multitargeted drug combinations: a combination of low doses of levetiracetam, atorvastatin and ceftriaxone exerts antiepileptogenic effects in a mouse model of acquired epilepsy. Neurobiology Disordes. 2021; 149:1-19. DOI: 10.1016/j.nbd.2020.105227

Ali AE, Mahdy HM, Elsherbiny DM, Azab SS. Rifampicin ameliorates lithiumpilocarpine-induced seizures, consequent hippocampal damage and memory deficit in rats: impact on oxidative, inflammatory and apoptotic machineries. Biochem Pharmacol. 2018; 156:431-43. DOI: 10.1016/j. bcp.2018.09.004.

Amakhin DV, Soboleva EB, Zaitsev AV. Cephalosporin antibiotics are weak blockers of GABAa receptor-mediated synaptic transmission in rat brain slices. Biochem Biophys Res Commun. 2018; 499(4):868-74. DOI: 10.1016/j.bbrc.2018.04.008.

Beheshti Nasr SM, Moghimi A, Mohammad-Zadeh M, Shamsizadeh A, Noorbakhsh SM. The effect of minocycline on seizures induced by amygdala kindling in rats. Seizure. 2013; 22(8):670-4. DOI: 10.1016/j.seizure.2013.05.005

Osuntokun OS, Abdulwahab UF, Akanji NO, Adedokun KI, Adekomi AD, Olayiwola G. Anticonvulsant and neuroprotective effects of carbamazepine-levetiracetam adjunctive treatment in convulsive status epilepticus rat model: Inhibition of cholinergic transmission. Neuroscience Letters. 2021; 762:136167. DOI:10.1016/j.neulet.2021.136167

Wherry wb, oliver ww. Blood cultures in epilepsy. JAMA. 1916; (15):1087-1088.DOI:10.1001/jama.1916.02590150035010

Gómez-Eguílaz M, Ramón-Trapero JL, Pérez-Martínez L, Blanco JR. The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: a pilot study. Benef Microbes. 2018;9(6):875-881. doi:10.3920/BM2018.0018

Lindefeldt M, Eng A, Darban H et al. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes. 2019; 5(5). DOI: 10.1038/s41522-018-0073-2

Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?. Neurochem Int. 2016; 99:110-132. doi:10.1016/j.neuint.2016.06.011

De Caro C, Leo A, Nesci V, et al. Intestinal inflammation increases convulsant activity and reduces antiepileptic drug efficacy in a mouse model of epilepsy. Sci Rep. 2019; 9(1):13983. DOI:10.1038/s41598-019-50542-0

He Z, Cui BT, Zhang T, et al. Fecal microbiota transplantation cured epilepsy in a case with Crohn’s disease: The first report. World J Gastroenterol. 2017; 23(19):3565-3568. DOI:10.3748/wjg.v23.i19.3565

Descargas

Publicado

2023-06-30

Cómo citar

Yory-Montalvo, N., Villaraga-Galvis, M.-A., Vargas-Ramírez, A.-M., & Becerra, L. (2023). El rol del eje cerebro-intestino en las enfermedades neurodegenerativas. Salutem Scientia Spiritus, 9(2), 18–29. Recuperado a partir de https://revistas.javerianacali.edu.co/index.php/salutemscientiaspiritus/article/view/1361

Número

Sección

Revisión de la literatura

Artículos más leídos del mismo autor/a