Linfohistiocitosis hemofagocítica secundaria asociada a microorganismos patógenos en pediatría, fisiopatología y diagnóstico: Revisión de tema.

Autores/as

Palabras clave:

Linfohistiocitosis hemofagocítica secundaria, Infección, Fisiopatología, Respuesta inmunológica, Diagnóstico, Pediatría

Resumen

La linfohistiocitosis hemofagocítica secundaria (s-HLH) es un trastorno inflamatorio sistémico agudo dado por activación descontrolada del sistema inmune produciendo, a su vez, una tormenta de citoquinas. Este trastorno es causado por infecciones, enfermedades autoinmunes o malignidad y es más prevalente en población adulta, por lo que cuenta con pocos estudios en pacientes pediátricos. El objetivo de esta revisión es describir la relación fisiopatológica de la s-HLH en pacientes pediátricos según los microorganismos infecciosos y su asociación diagnóstica. Se utilizaron las bases de datos PubMed, Embase, SCOPUS y LILACS hasta mayo de 2022. Se identificó una relación entre la s-HLH en pacientes pediátricos y la infección por diferentes patógenos intracelulares, cuya fisiopatología se relacionó con manifestaciones clínicas similares como fiebre, pancitopenia y hepatoesplenomegalia, hallazgos que deben ser considerados para incluir dentro del diagnóstico diferencial a la s-HLH.

Biografía del autor/a

Camila Bermeo-Botero, Pontificia Universidad Javeriana Cali (Colombia)

Estudiante de Medicina, Semillero de Innovadores en Salud ISSEM.

Jenniffer Dussán-Rodríguez, Pontificia Universidad Javeriana Cali (Colombia)

Estudiante de Medicina, Semillero de Innovadores en Salud ISSEM.

Citas

García Robles R. Epidemiología de la preeclampsia en una muestra de gestantes de Bogotá (Colombia). Univ. Med. [Internet]. 2020 [citado 2 de junio de 2022]; Disponible en: https://revistas.javeriana.edu.co/index.php/vnimedica/article/view/31201

Ramos JGL, Sass N, Costa SHM. Preeclampsia. Rev Bras Ginecol Obstet. 2017; 39(9): 496-512. DOI 10.1055/s-0037-1604471.

ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstet Gynecol. 2019; 133(1):1. DOI 10.1097/AOG.0000000000003018.

Medjedovic E, Stanojevic M, Kurjak A, Begic E, Iglica A, Jonuzovic-Prosic S. Association between maternal thyroid function and risk of gestational hypertension and preeclampsia. Journal of Perinatal Medicine. 2022. DOI 10.1515/jpm-2022-0121

Jhee JH, Lee S, Park Y, Lee SE, Kim YA, Kang SW, Kwon JY, Park JT. Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One. 2019;14(8): e0221202. DOI 10.1371/journal.pone.0221202.

Martínez-Sánchez L, Rodríguez-Gázquez M, Ruiz-Mejía C, Hernández-Restrepo F, Quintero-Moreno D, Arango-Gómez A. Perfil clínico y epidemiológico de pacientes con trastorno hipertensivo asociado al embarazo en Medellín, Colombia. Revista Cubana de Obstetricia y Ginecología [Internet]. 2018; 44(2) Disponible en: http://www.revginecobstetricia.sld.cu/index.php/gin/article/view/349

Stuart JJ, Tanz LJ, Rimm EB, Spiegelman D, Missmer SA, Mukamal KJ, Rexrode KM, Rich-Edwards JW. Cardiovascular Risk Factors Mediate the Long-Term Maternal Risk Associated With Hypertensive Disorders of Pregnancy. J Am Coll Cardiol. 2022; 79(19): 1901-13. DOI 10.1016/j.jacc.2022.03.335

Ives CW, Sinkey R, Rajapreyar I, Tita ATN, Oparil S. Preeclampsia-Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;76(14):1690-1702. DOI 10.1016/j.jacc.2020.08.014.

Parada-Niño L, Castillo-León LF, Morel A. Preeclampsia, Natural History, Genes, and miRNAs Associated with the Syndrome. J Pregnancy. 2022; 2022: 3851225. DOI 10.1155/2022/3851225.

Ruszala M, Poniedziałek-Czajkowska E, Mierzynski R, Wankowicz A, Zamojska A, Grzechnik M, Golubka I, Leszczynska-Gorzelak B, Gogacz M. Thrombocytopenia in pregnant women. Ginekol Pol. 2021;92(8):587-90. DOI 10.5603/GP. a2021.0147.

Kuter D. J., Efraim M., Mayer J., Trněný M., McDonald V., Bird R.Rilzabrutinib, an oral BTK inhibitor, in immune thrombocytopenia. The New England Journal of Medicine. 2022; 386(15): 1421–31. DOI 10.1056/NEJMoa2110297

Gu Hao MD, Xie Xingjuan MD, Ma Jingyao MD, Fu Lingling MD, Ma Jie MD, Wu Runhui, et al. Single Nucleotide Polymorphisms of the HIF1A Gene are Associated With Sensitivity of Glucocorticoid Treatment in Pediatric ITP Patients. Journal of Pediatric Hematology/Oncology [intenet]. 2022. DOI 10.1097/MPH.0000000000002483

Arigita Lastra M, Martínez Fernández GS. Síndrome HELLP: controversias y pronóstico [HELLP syndrome: controversies and prognosis]. Hipertens Riesgo Vasc. 2020; 37(4):147-151. DOI 10.1016/j.hipert.2020.07.002.

Díaz Sanches. E, Martínez Sánchez LM, Roldan Tabares MD, Jaramillo Jaramillo LI. MicroARN: la biología molecular como herramienta de predicción en preeclampsia. Clínica e Investigación en Ginecología y Obstetricia. 2022; 49 (2). DOI 10.1016/j.gine.2021.100740

Garovic VD, Dechend R, Easterling T, Karumanchi SA, McMurtry Baird S, Magee LA, et al. Hypertension in pregnancy: Diagnosis, blood pressure goals, and pharmacotherapy: A scientific statement from the American heart association. Hypertension [Internet]. 2022; 79(2): 21–41. Doi 10.1161/HYP.0000000000000208

Kong L, Chen X, Liang Y, Forsell Y, Gissler M, Lavebratt C. Association of Preeclampsia and Perinatal Complications With Offspring Neurodevelopmental and Psychiatric Disorders. JAMA Netw Open. 2022; 5(1): e2145719. DOI10.1001/jamanetworkopen.2021.45719

García AJ, Baex Jimenez MV, Ortiz Gonzalez GD, Toledo P, Jurad Sandovai L, Peña Kuc M. Característica clínicas, epidemiológica y riesgo obstétrico de paciente con preeclampsia-eclampsia. Rev Enferm. [Internet]. 2018. Disponible en: https://www.medigraphic.com/pdfs/enfermeriaimss/eim-2018/eim184e.pdf

Xiao J, Fan W, Zhu Q, Shi Z. Diagnosis of proteinuria using a random urine protein-creatinine ratio and its correlation with adverse outcomes in pregnancy with preeclampsia characterized by renal damage. J Clin Hypertens (Greenwich). 2022; 24(5): 652-659. DOI 10.1111/jch.14467.

Ma’ayeh M, Costantine MM. Prevention of preeclampsia. Semin Fetal Neonatal Med. 2020; 25(5): 101123. DOI 10.1016/j.siny.2020.101123.

Anda L., Boldeanu L., Radu M., Rotaru I., Siminel A., Manolea MM, et al.The potential value of diagnostic and predictive serum biomarkers for preeclampsia. Rom J Morphol Embryol [internet]. 2021; 62(4). DOI10.47162/RJME.62.4.y

Salamanca-Sánchez AL, Nieves-Díaz LA, Arenas-Cárdenas YM. Preeclamsia: prevalencia y factores asociados en gestantes de una institución de salud de Boyacá en el periodo 2015 a 2017. Revista Investig. Salud Univ. Boyacá [Internet]. 2019 [citado 2 de junio de 2022]; 6(2): 40-52. Disponible en: https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/422

Machlus KR, Italiano JE Jr. The incredible journey: From megakaryocyte development to platelet formation. J Cell Biol. 2013; 201(6): 785-96. DOI 10.1083/jcb.201304054.

Stegner D, vanEeuwijk JMM, Angay O, Gorelashvili MG, Semeniak D, Pinnecker J, et al. Thrombopoiesis is spatially regulated by the bone marrow vasculature. Nat Commun. 2017; 25;8(1): 127. DOI 10.1038/s41467-017-00201-7.

Romanelli G, Olivera-Bravo S, Beloso Carolina, V Lucía, García N, Giordano H, et al. Megacariopoyesis humana in vitro: determinación de la concentración óptima de trombopoyetina. Anfamed [Internet].2019; 6(2): 25-34. DOI 10.25184/anfamed2019v6n2a1.

Nakamura-Ishizu A, Matsumura T, Stumpf PS, Umemoto T, Takizawa H, et al. Thrombopoietin Metabolically Primes Hematopoietic Stem Cells to Megakaryocyte-Lineage Differentiation. Cell Rep. 2018; 13;25(7):1772-85. DOI 10.1016/j.celrep.2018.10.059.

Mukherjee A, Barik S, Sar P, Sarkar A. Role of thrombopoiesis in leishmaniasis. Cytokine. 2021; 147: 155310. DOI 10.1016/j.cyto.2020.155310.

Noetzli LJ, French SL, Machlus KR. New Insights Into the Differentiation of Megakaryocytes From Hematopoietic Progenitors. Arterioscler Thromb Vasc Biol. 2019; 39(7): 1288-1300. DOI 10.1161/ATVBAHA.119.312129

Hou, Ming Regulation of megakaryopoiesis by bone marrow macrophage polarization, Blood Science. 2021; 3(4): 149-50. DOI 10.1097/BS9.0000000000000090

Wang R, Hu X, Wang J, Zhou L, Hong Y, Zhang Y. Proanthocyanidin A1 promotes the production of platelets to ameliorate chemotherapy-induced thrombocytopenia through activating JAK2/STAT3 pathway. Phytomedicine. 2022; 95: 153880. DOI 10.1016/j.phymed.2021.153880

Kang Y, Lin J, Wang L, Shen X, Li J, Wu A, Yue L, Wei L, Ye Y, Yang J, Wu J. Hirsutine, a novel megakaryopoiesis inducer, promotes thrombopoiesis via MEK/ERK/FOG1/TAL1 signaling. Phytomedicine. 2022; 102: 154150. DOI 10.1016/j.phymed.2022.154150.

Demir S, Boldrin E, Sun Q, Hampp S, Tausch E, Eckert C, et al. Therapeutic targeting of mutant p53 in pediatric acute lymphoblastic leukemia. Haematologica. 2020; 105(1):170-81. DOI 10.3324/haematol.2018.199364

Qiao Y, Yang T, Gan Y, Li W, Wang C, Gong Y, et al. Associations between aspirin use and the risk of cancers: a meta-analysis of observational studies. BMC Cancer. 2018; 18(1): 288. DOI 10.1186/s12885-018-4156-5.

Gardikioti A, Venou TM, Gavriilaki E, Vetsiou E, Mavrikou I, Dinas K, Daniilidis A, Vlachaki E. Molecular Advances in Preeclampsia and HELLP Syndrome. Int J Mol Sci. 2022; 23(7):3851. DOI 10.3390/ijms23073851.

Noris P, Pecci A. Hereditary thrombocytopenias: a growing list of disorders. Hematology Am Soc Hematol Educ Program. 2017; 2017(1): 385-99. DOI 10.1182/asheducation-2017.1.385

M Ona K, Kapidzic M, Garrido-Gomez T, Zdravkovic T, Fisher SJ. Preeclampsia: novel insights from global RNA profiling of trophoblast subpopulations. Am J Obstet Gynecol. 2017; 217(2): 200. DOI 10.1016/j.ajog.2017.03.017

Mayer-Pickel K, Kolovetsiou-Kreiner V, Stern C, Münzker J, Eberhard K, Trajanoski S, et al. Effect of Low-Dose Aspirin on Soluble FMS-Like Tyrosine Kinase 1/Placental Growth Factor (sFlt-1/PlGF Ratio) in Pregnancies at High Risk for the Development of Preeclampsia. J Clin Med. 2019; 8(9): 1429. DOI 10.3390/jcm8091429.

Nuzzo AM, Moretti L, Mele P, Todros T, Eva C, Rolfo A. Effect of Placenta-Derived Mesenchymal Stromal Cells Conditioned Media on an LPS-Induced Mouse Model of Preeclampsia. Int J Mol Sci. 2022; 23(3):1674. DOI 10.3390/ijms23031674.

Alese MO, Moodley J, Naicker T. Preeclampsia and HELLP syndrome, the role of the liver. J Matern Fetal Neonatal Med. 2021; 34(1):117-123. DOI 10.1080/14767058.2019.1572737

Cines DB, Levine LD. Thrombocytopenia in pregnancy. Blood. 2017; 130(21):2271-77. DOI 10.1182/blood-2017-05-781971.

Gray KJ, Kovacheva VP, Mirzakhani H, Bjonnes AC, Almoguera B, DeWan AT, et al. Gene-Centric Analysis of Preeclampsia Identifies Maternal Association at PLEKHG1. Hypertension. 2018; 72(2): 408-416. DOI 10.1161/HYPERTENSIONAHA.117.10688

Herur A, Aithala M, Das KK, Mallapur A, Hegde R, Kulkarni S. Interplay of Oxidative Stress and Nitric Oxide Synthase Gene Expression on Cardiovascular Responses in Preeclampsia. Rev Bras Ginecol Obstet.2022; 44(3):214-219. DOI 10.1055/s-0042-1742313.

Agostinis C, Mangogna A, Balduit A, Aghamajidi A, Ricci G, Kishore U, et al. COVID-19, Pre-Eclampsia, and Complement System. Front Immunol. 2021;12: 775168. DOI 10.3389/fimmu.2021.775168.

Vaught AJ, Kovell LC, Szymanski LM, Mayer SA, Seifert SM, Vaidya D, et al. Acute Cardiac Effects of Severe Pre-Eclampsia. J Am Coll Cardiol. 2018; 72(1):1-11. DOI 10.1016/j.jacc.2018.04.048.

Agostinis C, Stampalija T, Tannetta D, Loganes C, Vecchi Brumatti L, De Seta F, Celeghini C, Radillo O, Sargent I, Tedesco F, Bulla R. Complement component C1q as potential diagnostic but not predictive marker of preeclampsia. Am J Reprod Immunol.2016; 76(6): 475-481. DOI 10.1111/aji.12586.

He YD, Xu BN, Wang ML, Wang YQ, Yu F, Chen Q, et al. Dysregulation of complement system during pregnancy in patients with preeclampsia: A prospective study. Mol Immunol. 2020; 122: 69-79. DOI 10.1016/j.molimm.2020.03.021.

Palomo M, Youssef L, Ramos A, Torramade-Moix S, Moreno-Castaño AB, Martinez-Sanchez J. Differences and similarities in endothelial and angiogenic profiles of preeclampsia and COVID-19 in pregnancy. Am J Obstet Gynecol. 2022: S0002-9378(22)00227-7. DOI 10.1016/j.ajog.2022.03.048.

Shangguan Y, Wang Y, Shi W, Guo R, Zeng Z, Hu W, et al. Systematic proteomics analysis of lysine acetylation reveals critical features of placental proteins in pregnant women with preeclampsia. Journal of Cellular and Molecular Medicine. 2021; 25(22): 10614–26. DOI10.1111/jcmm.16997

Fang CJ, Fremeaux-Bacchi V, Liszewski MK, Pianetti G, Noris M, Goodship TH, Atkinson JP. Membrane cofactor protein mutations in atypical hemolytic uremic syndrome (aHUS), fatal Stx-HUS, C3 glomerulonephritis, and the HELLP syndrome. Blood. 2008; 111(2):624-32. DOI 10.1182/blood-2007-04-084533

Kubo M, Sakai K, Hayakawa M, Kashiwagi H, Yagi H, Seki Y, Hasegawa A, Tanaka H, Amano I, Tomiyama Y, Matsumoto M. Increased cleavage of von Willebrand factor by ADAMTS13 may contribute strongly to acquired von Willebrand syndrome development in patients with essential thrombocythemia. J Thromb Haemost. 2022. DOI 10.1111/jth.15717.

Yoshida Y, Matsumoto M, Yagi H, Isonishi A, Sakai K, Hayakawa M, Hori Y, Sado T, Kobayashi H, Fujimura Y. Severe reduction of free-form ADAMTS13, unbound to von Willebrand factor, in plasma of patients with HELLP syndrome. Blood Adv. 2017; 1(20):1628-31. DOI 10.1182/bloodadvances.2017006767.

Iskender D, Obut M, Keles A, Arat O, Celik O, Sarikaya D, et al. Diagnostic performance of hematological indices in early and late preeclampsia.Medicine Science. 2022; 11(1):148. DOI10.5455/medscience.2021.10.357

Shorikov EI, Zaliavska OV, Shorikova DV, Nika OM, Shorikov PE, Khukhlina Os. Associations of polymorphisms nos3-t-786c, mthfr-c667t, p2ry12-t-744c, (gpibα) -c482t and gene interactions in macroangiopathies in patients with combined hypertension and type diabetes mellitus 2. wiad lek. 2022; 75(4):1002-8. DOI 10.36740/wlek202204215.

Oliveira GH, Pereira AD, Pinheiro CL, Ferreira CG, García VL, Luizon RM, et al. Gene-gene interactions in the protein kinase C/endothelial nitric oxide synthase axis impact the hypotensive effects of propofol. Basic & Clinical Pharmacology & Toxicology. 2022. 130(2):277-87. DOI 10.1111/bcpt.13691

Khanuja K, Levy AT, McLaren RA Jr, Berghella V. Pre- and postpregnancy platelet counts: evaluating accuracy of gestational thrombocytopenia and immune thrombocytopenia purpura diagnoses. Am J Obstet Gynecol MFM. 2022; 4(3):100606. DOI 10.1016/j.ajogmf.2022.100606

Audia S, Mahévas M, Samson M, Godeau B, Bonnotte B. Pathogenesis of immune thrombocytopenia. Autoimmun Rev. 2017; 16(6):620-32. DOI 10.1016/j.autrev.2017.04.012.

Husnul G, Serudji J; Basyir V. Differences In Platelet and Thrombin Levels In Preeclampsia and Normal Pregnancy.Syntax Literate; Jurnal Ilmiah Indonesia. 2022; 7(5):5482-92. DOI 10.36418/syntax-literate.v7i5.6950.

Petca, A, Bianca C, Irina P, Cristian D, Claudia M, Florica Ș, et al. Síndrome de HELLP: visión holística de la fisiopatología. Medicina. 2022. 58(2):326. DOI https://doi.org/10.3390/medicina58020326

Descargas

Publicado

2022-12-23

Cómo citar

Bermeo-Botero, C., & Dussán-Rodríguez, J. (2022). Linfohistiocitosis hemofagocítica secundaria asociada a microorganismos patógenos en pediatría, fisiopatología y diagnóstico: Revisión de tema. Salutem Scientia Spiritus, 8(4), 64–76. Recuperado a partir de https://revistas.javerianacali.edu.co/index.php/salutemscientiaspiritus/article/view/633

Número

Sección

Revisión de la literatura