Descripción del desarrollo embrionario del intestino delgado y grueso de rata Wistar comparado con humanos. Revisión de la literatura
Palabras clave:
Biología del desarrollo, Embriología, Intestino delgado, Intestino grueso, Rata Wistar, Seres humanos, Embriología comparadaResumen
En esta revisión de la literatura se realizó una descripción de la biología del desarrollo del intestino delgado y grueso en rata Wistar y en seres humanos, comparando la embriología en diferentes niveles de organización biológica (órgano, estructuras tisulares, tejidos, estructuras celulares y células). Como parámetro embrionario se tuvo en cuenta el tiempo de desarrollo (en días), considerando que no existe un consenso que permita extrapolar el desarrollo de los intestinos delgado y grueso entre ambas especies. Para ello, se realizó una búsqueda sistematizada de la literatura en MedLine, a través de PubMed, combinando las palabras clave “Developmental biology”, “small intestine”, “large intestine” y “Wistar rat”. La información obtenida sobre el desarrollo embrionario de los intestinos delgado y grueso de rata Wistar en los 10 artículos incluidos en la discusión, se contrastó con las descripciones de los libros clásicos de la biología del desarrollo de los seres humanos. El consenso de desarrollo propuesto puede ser de gran utilidad para futuras investigaciones, en el contexto de la medicina traslacional, que involucren el biomodelo murino rata Wistar.
Descargas
Referencias
Marincola FM. Translational medicine: A two-way road. J Transl Med. 2003; 1:1-2. DOI: 10.1186/1479-5876-1-1
Melcon M, Cristina C. Medicina traslacional. Neurol Arg. 2014; 6:4.
Oyarzún M. Medicina traslacional: Un puente de plata entre las ciencias básicas y la medicina clínica. Rev Chill Enferm Respir. 2017; (33):81-84.
Valdés IP, Ramírez-Santana M, Basagoitía A, Testar X, Vásquez JA. Translational medicine and innovation in health: mechanisms and perspectives. Rev Med Chil. 2018; 146(7):890-898. DOI: 10.4067/s0034-98872018000700890.
Cuellar L, Zafra D, Moreno S, Rosero D, Martínez C, Moreno F. Determinación del tiempo de gestación y desarrollo embrionario en rata Wistar (Rattus norvegicus) de un bioterio de Cali (Colombia). Salutem Scientia Spiritus 2019; 5(1):14-20.
Arteaga-Martínez SM, García-Peláez MI. Embriología humana y biología del desarrollo. Primera edición. Editorial Médica Panamericana; 2014.
Carlson B. Embriología humana y biología del desarrollo. Quinta edición. Barcelona: Elsevier; 2014.
Flores V. Embriología Humana. Bases moleculares y celulares de la histogénesis, la morfogénesis y las alteraciones del desarrollo. Orientada a la formación médica. Primera edición. Panamericana; 2015.
Sadler TW. Embriología médica de Langman. Décima segunda edición. Wolters Kluwer: Barcelona; 2015.
Eynard AR, Valentich MA, Rovasio RA. Histología y Embriología Humanas. Bases celulares y moleculares con orientación clínico-patológica. Quinta edición. Panamericana; 2016.
Moore KL, Persaud TVN, Torchia MG. Embriología clínica. Décima edición. Elsevier: Barcelona; 2016.
Beck F. Homeobox genes in gut development. Gut. 2002; 51(3):450-454. DOI: 10.1136/gut.51.3.450
Gilbert SF. Biología del desarrollo. Séptima edición. Editorial Médica Panamericana: Buenos Aires; 2006.
Roa I, Meruane M. Digestive system development. Int J Morphol. 2012; 30(4):1285-1294.
Lowe JS, Anderson PG. Histología Humana de Stevens y Lowe. Cuarta edición; Elsevier Mosby: Barcelona; 2015.
Ross MH, Pawlina W. Histología: texto y atlas color con biología celular y molecular. Séptima edición. Wolters Kluwer: Barcelona; 2016.
Gartner LP. Texto de histología: Atlas a color. Cuarta edición. Elsevier: Barcelona; 2017.
Vásquez M, Vega H. Desarrollo del epitelio del tracto intestinal y su participación en la defensa del organismo en mamíferos. REDVET. 2012; 13(7):1-25.
Chin AM, Hill DR, Aurora M, Spence JR. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin Cell Dev Biol. 2017; 66:81-93. DOI: 10.1016/j.semcdb.2017.01.011
Boyd CAR. Amine uptake and peptide hormone secretion: APUD cells in a new landscape. J Physiol. 2001; 531(Pt 3):581. DOI: 10.1111/j.1469-7793.2001.0581h.x
Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B. Enteroendocrine Cells: A Review of Their Role In Brain-Gut Communication. Neurogastroenterol Motil. 2016; 28(5): 620-630. DOI: 10.1111/nmo.12754
May CL, Kaestner KH. Gut Endocrine Cell Development. Mol Cel Endocrinol. 2018; 323(1):70-75. DOI: 10.1016/j.mce.2009.12.009
Nicoletti C. Unsolved mysteries of intestinal M cells. Gut. 2000; 47(5):735-9. DOI: 10.1136/gut.47.5.735
Ramírez N, Laverde N, Moreno F. Estandarización de los periodos morfogenéticos de la cardiogénesis de rata Wistar (Rattus norvegicus). Salutem Scientia Spiritus. 2021; 7(4): XX-XX.
Reusens-Billen B, Remacle C, Hoet JJ. The development of the fetal rat intestine and its reaction to maternal diabetes. Diabetes Res Clin Pract. Oct 1988; 6:199-211. DOI: 10.1016/0168-8227(89)90030-2
Morikawa Y, Miyamoto M, Okada T. Perinatal Development of Brunner’s Glands in the Rat: Morphometrical Study. Biol Neonate. 1993; 63:258-267 DOI: 10.1159/000243939
Matsui J, Fujimiya M, Matsui S, Amakata Y, Renda T, Kimura H et al. Transient expression of [D-Ala^2] deltrophin i-like immunoreactivity in prenatal rat small intestine. J Histochem Cytochem. 1994; 42(10):1377-81. DOI: 10.1177/42.10.7930520
Dulue I, Freund JN, Leberquier C, Kedinger M. Fetal endoderm primarily holds the temporal and positional information required for mammalian intestinal development. J Cell Biol. 1994; 126(1):211-221. DOI: 10.1083/jcb.126.1.211
Ono E, Doi Y, Furukawa H, Hirata K, Fujimoto S. The differentiation of entero-endocrine cells of pre- and postnatal rats: Light and electron microscopy and immunocytochemistry. Acta Anat (Basel). 1994; 149(2):81-8. DOI: 10.1159/000147561
De Jonge WJ, Dingemanse MA, de Boer PA, Lamers WH, Moorman AF. Arginine-metabolizing enzymes in the developing rat small intestine. Pediatr Res. 1998; 43(4 Pt 1):442-51. DOI: 10.1203/00006450-199804000-00002
Ratineau C, Duluc I, Pourreyron C, Kedinger M, Freund JN, Roche C. Endoderm -and mesenchyme- dependent commitment of the differentiated epithelial cell types in the developing intestine of rat. Differentiation. 2003; 71(2):163-9. DOI: 10.1046/j.1432-0436.2003.t01-1-710203.x
Ichikawa S, Yamashita A. Expression of adhesion molecules in the rectum-associated lymph nodules of pre- and postnatal specific pathogen-free rats. J. J Gastroenterol Hepatol. 2003; 18(8):970-9. DOI: 10.1046/j.1440-1746.2003.03096.x
Baker-Méio I, Siviero I, Ferrante SMR, Carvalho JJ. Morphologic study of embryonic development of rat duodenum through a computerized three-dimensional reconstruction: Critical analysis of solid core theory. Pediatr Surg Int. 2008; 24:561-565. DOI: 10.1007/s00383-008-2125-9
Camargo KC, Gomes JR, Loddi MM, de Sordi R, Costa-Ayub CLS, Soares MA. MT1-MPP and its potential role in the vertebrate intestinal morphogenesis. Acta Histochem. 2016; 118(7):729-735. DOI: 10.1016/j.acthis.2016.07.009
Hill MA. Embryology: Carnegie Stage Comparison. UNSW Embryology; 2021. [Accedido 06 de octubre de 2021]. Disponible en: https://embryology.med.unsw.edu.au/embryology/index.php/Carnegie_Stage_Comparison
Richardson L, Venkataraman S, Stevenson P, Yang Y, Moss J, Graham L et al. EMAGE mouse embryo spatial gene expression database: (2014 update) Nucleic Acids Res. 2014; 42(1):D835-44. DOI: 10.1093/nar/gkt1155
Lueschow SR, McElroy SJ. The Paneth cell: The curator and defender of the immature small intestine. Front Immunol. 2020; 11:587. DOI: 10.3389/fimmu.2020.00587
Fu M, Tam PKH, Sham MH, Lui VCH. Embryonic development of the ganglion plexuses and the concentric layer structure of human gut: A topographical study. Anat Embryol (Berl). 2004; 208(1):33-41. DOI: 10.1007/s00429-003-0371-0
Botros KG, el-Hady SL, el-Mohandes EA. Prenatal development of the human Brunner’s glands. Anat Anz. 1990; 171(1):23-30.
Buisine MP, Devisme L, Savidge TC, Gespach C, Gosselin B, Porchet N et al. Mucin gene expression in human embryonic and fetal intestine. Gut. 1998; 43:519-524. DOI: 10.1136/gut.43.4.519
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2023 Salutem Scientia Spiritus
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
La Revista Salutem Scientia Spiritus usa la licencia Creative Commons de Atribución – No comercial – Sin derivar: Los textos de la revista son posibles de ser descargados en versión PDF siempre que sea reconocida la autoría y el texto no tenga modificaciones de ningún tipo.