Biomarcadores en anemia aplásica.
Resumen
Objetivo: Ampliar el conocimiento que se tiene sobre la anemia aplásica, la implicación de los biomarcadores diagnósticos y el uso de los mismos. Materiales y métodos: Se realizó una revisión de la literatura en la base de datos PubMed y Elsevier, usando palabras claves como ¨anemia aplásica¨, ¨biomarcadores¨ y ¨anemia¨. Resultados: Después de revisar la información, se ha concluido que existen varios biomarcadores útiles en la anemia aplásica. Se han descubierto diversas moléculas nuevas que también resultan beneficiosas en el diagnóstico y pronóstico de esta enfermedad, los cuales contribuyen activamente a la insuficiencia hematopoyética, tales como la edad, el sexo, citoquinas como la Trombopoyetina (TPO), el interferón gamma (IFN-γ), factor de necrosis tumoral-a (TNF-α), interleucina 8 (IL-8), IL-12p70, IL17, IL-23 e IL-27, entre otros. Conclusiones: Se evidenció que las citoquinas tienen un papel importante en el proceso de falla de la médula, por su papel como citoquinas anti hematopoyéticas, lo cual es importante para la progresión de la enfermedad y evaluar el nivel de compromiso de la médula ósea. Adicionalmente los miARN son biomarcadores de importancia clínica en el desarrollo de la anemia aplásica, ya que en diversos estudios se evidencia que estos están implicados en la modulación de la expresión génica, lo que podría ser un nuevo enfoque terapéutico para estos pacientes, el único obstáculo, es la disponibilidad de las técnicas en la práctica clínica.
Descargas
Citas
Wu Y, Yan L, Wang H, Liu H, Xing L, Fu R, et al. Clinical study on empirical and diagnostic-driven (pre-emptive) therapy of voriconazole in severe aplastic anaemia patients with invasive fungal disease after intensive immunosuppressive therapy. Eur J Clin Microbiol Infect Dis. 2021; 40(5):949-54. DOI: 10.1007/s10096-020-04054-9.
Young NS. Aplastic Anemia. N Engl J Med. 2018; 379(17):1643-56. DOI: 10.1056/NEJMra1413485
Deng XZ, Du M, Peng J, Long JX, Zheng CJ, Tan Y, et al. Associations between the HLA-A/B/DRB1 polymorphisms and aplastic anemia: evidence from 17 case-control studies. Hematology. 2018; 23(3):154-62. DOI: 10.1080/10245332.2017.1375064
. Zaimoku Y, Takamatsu H, Hosomichi K, Ozawa T, Nakagawa N, Imi T, et al. Identification of an HLA class I allele closely involved in the autoantigen presentation in acquired aplastic anemia. Blood. 2017; 129(21):2908-16. DOI: 10.1182/blood-2016-11-752378
Gross SA, Irons RD, Schnatter AR, Ryder J, Wang XQ, et al. A hospital-based case control study of aplastic anemia in Shanghai, China. Chem Biol Interact. 2010; 184(1-2):165-73. DOI: 10.1016/j.cbi.2009.12.015
Keel SB, Scott A, Sanchez-Bonilla M, Ho PA, Gulsuner S, Pritchard CC, et al. Genetic features of myelodysplastic syndrome and aplastic anemia in pediatric and young adult patients. Haematologica. 2016; 101(11):1343-50. DOI: 10.3324/haematol.2016.149476.
- García Iglesias MF, Bernardino de la Serna JI, Díez Porres L, Mora Rillo M, Lavilla Uriol P, Gil Aguado A. Un paciente con anemia. Medicina Integral. Elsevier. 2001; 38(1):8–17.
Peffault de Latour R, Kulasekararaj A, Iacobelli S, Terwel SR, Cook R, Griffin M, et al. Severe Aplastic Anemia Working Party of the European Society for Blood and Marrow Transplantation. Eltrombopag Added to Immunosuppression in Severe Aplastic Anemia. N Engl J Med. 2022; 386(1):11-23. DOI: 10.1056/NEJMoa2109965.
Issaragrisil S, Kaufman DW, Anderson T, Chansung K, Leaverton PE, Shapiro S, et al. The epidemiology of aplastic anemia in Thailand. Blood. 2006; 107(4):1299-307. DOI: 10.1182/blood-2005-01-0161.
Young NS. Acquired aplastic anemia. Ann Intern Med. 2002; 136(7):534-46. DOI: 10.7326/0003-4819-136-7-200204020-00011.
Chen J, Liu W, Yu W, Chen L, Wu J, Zhan Y,et al. A novel cell-based therapy for patients with aplastic anemia. Cytotherapy. 2010; 12(5):678-83. DOI: 10.3109/14653241003695000.
Maluf E, Hamerschlak N, Cavalcanti AB, Júnior AA, Eluf-Neto J, Falcão RP, et al. Incidence and risk factors of aplastic anemia in Latin American countries: the LATIN case-control study. Haematologica. 2009; 94(9):1220-6. DOI: 10.3324/haematol.2008.002642.
Atmar K, Ruivenkamp CAL, Hooimeijer L, Nibbeling EAR, Eckhardt CL, Huisman EJ, et al. Diagnostic Value of a Protocolized In-Depth Evaluation of Pediatric Bone Marrow Failure: A Multi-Center Prospective Cohort Study. Front Immunol. 2022; 13:883826. DOI: 10.3389/fimmu.2022.883826.
Deng J, McReynolds LJ. Inherited bone marrow failure syndromes: a review of current practices and potential future research directions. Curr Opin Pediatr. 2023; 35(1):75-83. DOI: 10.1097/MOP.0000000000001196.
Walne AJ, Vulliamy T, Bewicke-Copley F, Wang J, Alnajar J, Bridger MG, et al. Genome-wide whole-blood transcriptome profiling across inherited bone marrow failure subtypes. Blood Adv. 2021; 5(23):5360-71. DOI: 10.1182/bloodadvances.
Dong H, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V, et al. Update of the human and mouse Fanconi anemia genes. Hum Genomics. 2015; 9:32. DOI: 10.1186/s40246-015-0054-y.
Tholouli E, Sturgess K, Dickinson RE, Gennery A, Cant AJ, Jackson G, et al. In vivo T-depleted reduced-intensity transplantation for GATA2-related immune dysfunction. Blood. 2018; 131(12):1383-87. DOI: 10.1182/blood-2017-10-811489.
Giri N, Alter BP, Penrose K, Falk RT, Pan Y, Savage SA, et al. Immune status of patients with inherited bone marrow failure syndromes. Am J Hematol. 2015; 90(8):702-8. DOI: 10.1002/ajh.24046.
Michniacki TF, Hannibal M, Ross CW, Frame DG, DuVall AS, Khoriaty R, et al. Hematologic Manifestations of Deficiency of Adenosine Deaminase 2 (DADA2) and Response to Tumor Necrosis Factor Inhibition in DADA2-Associated Bone Marrow Failure. J Clin Immunol. 2018; 38(2):166-73. DOI: 10.1007/s10875-018-0480-4.
Schrezenmeier H, Körper S, Höchsmann B. Aplastische Anämie [Aplastic anemia]. Dtsch Med Wochenschr. 2014; 139(49):2503-6. German. DOI: 10.1055/s-0034-1387407.
Bluteau O, Sebert M, Leblanc T, Peffault de Latour R, Quentin S, Lainey E,et al. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood. 2018; 131(7):717-32. DOI: 10.1182/blood-2017-09-806489.
Zhang L, Ni R, Li J, Fan L, Song Y, Wang H, et al. Dioscin Regulating Bone Marrow Apoptosis in Aplastic Anemia. Drug Des Devel Ther. 2022; 16:3041-53. DOI: 10.2147/DDDT.S370506.
Kanamitsu K, Chayama K, Washio K, Yoshida R, Umeda Y, Yagi T,et al. Long-term Remission of Hepatitis-associated Aplastic Anemia Possibly due to Immunosuppressive Therapy after Liver Transplantation. Acta Med Okayama. 2018; 72(5):515-18. DOI: 10.18926/AMO/56250.
de Masson A, Bouaziz JD, de Latour RP, Benhamou Y, Moluçon-Chabrot C, Bay JO, et al. Severe aplastic anemia associated with eosinophilic fasciitis: report of 4 cases and review of the literature. Medicine (Baltimore). 2013; 92(2):69-81. DOI: 10.1097/MD.0b013e3182899e78.
Narita A, Kojima S. Biomarkers for predicting clinical response to immunosuppressive therapy in aplastic anemia. Int J Hematol. 2016; 104(2):153-8. DOI: 10.1007/s12185-016-2009-z.
Scheinberg P. Prognostic value of telomere attrition in patients with aplastic anemia. Int J Hematol. 2013; 97(5):553-7. DOI: 10.1007/s12185-013-1332-x.
Yoshida N, Yagasaki H, Hama A, Takahashi Y, Kosaka Y, Kobayashi R, et al. Predicting response to immunosuppressive therapy in childhood aplastic anemia. Haematologica. 2011; 96(5):771-4. DOI: 10.3324/haematol.2010.032805.
Chang MH, Kim KH, Kim HS, Jun HJ, Kim DH, Jang JH, et al. Predictors of response to immunosuppressive therapy with antithymocyte globulin and cyclosporine and prognostic factors for survival in patients with severe aplastic anemia. Eur J Haematol. 2010; 84(2):154-9. DOI: 10.1111/j.1600-0609.2009.01378.x.
Sloand E, Kim S, Maciejewski JP, Tisdale J, Follmann D, Young NS. Intracellular interferon-gamma in circulating and marrow T cells detected by flow cytometry and the response to immunosuppressive therapy in patients with aplastic anemia. Blood. 2002; 100(4):1185-91. DOI: 10.1182/blood-2002-01-0035.
Kojima S, Matsuyama T, Kodera Y, Tahara T, Kato T. Measurement of endogenous plasma thrombopoietin in patients with acquired aplastic anaemia by a sensitive enzyme-linked immunosorbent assay. Br J Haematol. 1997; 97(3):538-43. DOI: 10.1046/j.1365-2141.1997.992915.x.
Javan MR, Saki N, Moghimian-Boroujeni B. Aplastic anemia, cellular and molecular aspects. Cell Biol Int. 2021; 45(12):2395-2402. DOI: 10.1002/cbin.11689.
Zhang J, Wu Q, Shi J, Ge M, Li X, Shao Y, et al. Involvement of interleukin-21 in the pathophysiology of aplastic anemia. Eur J Haematol. 2015; 95(1):44-51. DOI: 10.1111/ejh.12471.
Park M, Park CJ, Jang S, Kim DY, Lee JH, Lee JH, et al. Reduced expression of osteonectin and increased natural killer cells may contribute to the pathophysiology of aplastic anemia. Appl Immunohistochem Mol Morphol. 2015; 23(2):139-45. DOI: 10.1097/PAI.0000000000000023.
Li H, Wang L, Pang Y, Jiang Z, Liu Z, Xiao H, et al. In patients with chronic aplastic anemia, bone marrow-derived MSCs regulate the Treg/Th17 balance by influencing the Notch/RBP-J/FOXP3/RORγt pathway. Sci Rep. 2017;7:42488. DOI: 10.1038/srep42488.
Brümmendorf TH, Maciejewski JP, Mak J, Young NS, Lansdorp PM. Telomere length in leukocyte subpopulations of patients with aplastic anemia. Blood. 2001; 97(4):895-900. DOI: 10.1182/blood.v97.4.895.
Bell JB, Abedin S, Platanias LC. Circulating microRNAs: promising biomarkers in aplastic anemia. Haematologica. 2017; 102(1):1-2. DOI: 10.3324/haematol.2016.156117.
Yates LA, Norbury CJ, Gilbert RJ. The long and short of microRNA. Cell. 2013; 153(3):516-9. DOI: 10.1016/j.cell.2013.04.003.
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75(5):843-54. DOI: 10.1016/0092-8674(93)90529-y.
Takyar S, Vasavada H, Zhang JG, Ahangari F, Niu N, Liu Q, et al. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis. J Exp Med. 2013; 210(10):1993-2010. DOI: 10.1084/jem.20121200.
Hosokawa K, Kajigaya S, Feng X, Desierto MJ, Fernandez Ibanez MD, Rios O, et al. A plasma microRNA signature as a biomarker for acquired aplastic anemia. Haematologica. 2017; 102(1):69-78. DOI: 10.3324/haematol.2016.151076.
Hosokawa K, Muranski P, Feng X, Keyvanfar K, Townsley DM, Dumitriu B, et al. Identification of novel microRNA signatures linked to acquired aplastic anemia. Haematologica. 2015; 100(12):1534-45. DOI: 10.3324/haematol.2015.126128.
Adhikari S, Mandal P. Integrated analysis of global gene and microRNA expression profiling associated with aplastic anaemia. Life Sci. 2019; 228:47-52. DOI: 10.1016/j.lfs.2019.04.045.
Kelkka T, Tyster M, Lundgren S, Feng X, Kerr C, Hosokawa K, et al. Anti-COX-2 autoantibody is a novel biomarker of immune aplastic anemia. Leukemia. 2022; 36(9):2317-27. DOI: 10.1038/s41375-022-01654-6.
Liu Q, Dong H, Li Y, Shen Y, Hong Y, Chen Y, et al. Apolipoprotein-A is a potential prognostic biomarker for severe aplastic anemia patients treated with ATG-based immunosuppressive therapy: a single-center retrospective study. Lipids Health Dis. 2022; 21(1):93. DOI: 10.1186/s12944-022-01703-0.
Ren J, Hou XY, Ma SH, Zhang FK, Zhen JH, Sun L, et al. Elevated expression of CX3C chemokine receptor 1 mediates recruitment of T cells into bone marrow of patients with acquired aplastic anaemia. J Intern Med. 2014; 276(5):512-24. DOI: 10.1111/joim.12218.
Wang L, Liu H. Pathogenesis of aplastic anemia. Hematology. 2019; 24(1)559-66. DOI: 10.1080/16078454.2019.1642548.
Chen X, Zhang Y, Zhang Y, Zhang Y, Wang S, Yu Z, et al. Increased IFN-γ+ and TNF-α+ mucosal-associated invariant T cells in patients with aplastic anemia. Cytometry B Clin Cytom. 2023. DOI: 10.1002/cyto.b.22115.
Shukla S, Tripathi AK, Verma SP, Awasthi N. Prognostic value of TNF-a-308 and IFN-g-874 single nucleotide polymorphisms and their plasma levels in patients with aplastic anemia. Blood Res. 2020; 55(4):193-99. DOI: 10.5045/br.2020.2020009.
Giudice V, Banaszak LG, Gutierrez-Rodrigues F, Kajigaya S, Panjwani R, Ibanez MDPF, et al. Circulating exosomal microRNAs in acquired aplastic anemia and myelodysplastic syndromes. Haematologica. 2018 ; 103(7):1150-59. DOI: 10.3324/haematol.2017.182824.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Anggy Valentina Soto-Manzano, Samuel Giraldo-Jiménez, Luis Miguel Flórez-Castaño, Julián David Caballero-Henao, Mateo Uribe-Ramírez, Lina María Martínez-Sánchez
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
La Revista Salutem Scientia Spiritus usa la licencia Creative Commons de Atribución – No comercial – Sin derivar: Los textos de la revista son posibles de ser descargados en versión PDF siempre que sea reconocida la autoría y el texto no tenga modificaciones de ningún tipo.