Determinantes prenatales y postnatales tempranos de enfermedades cardiovasculares en el adulto.

Autores/as

Palabras clave:

Disfunción endotelial, Inflamación subclínica, Resistencia a la insulina, Epigenética

Resumen

El enfoque tradicional en la prevención de las Enfermedades Crónicas No Transmisibles (ECNT) como las Enfermedades Cardiovasculares (ECVs) se ha centrado en el estudio e intervención de factores de riesgo clásicos (sedentarismo, malnutrición, tabaquismo, obesidad etc) en la etapa adulta, sin embargo actualmente hay suficiente evidencia que permite  considerar que el riesgo de desarrollar una ECVs se inicia desde la etapa prenatal y postnatal temprana. Esta susceptibilidad ocurre en periodos de tiempo de alta plasticidad celular  frente a factores de riesgo clásicos y no clásicos, que pueden determinar las instauración fisiológica de disfunción endotelial, resistencia a la insulina, inflamación subclínica crónica y modificaciones epigenéticas estables. Por lo tanto, nuevos esfuerzos en prevención y tratamiento de las ECVs deberían  tener en cuenta la salud prenatal y postnatal temprana como un primer paso para reducir la morbimortalidad ocasionada por estas patologías.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

José Guillermo Ortega-Ávila, Pontificia Universidad Javeriana Cali (Colombia)

Bacteriólogo, Doctorado en Ciencias Biomédicas, Profesor Departamento de Ciencias Básicas de la Salud.

Citas

Reardon S. A world of chronic disease. Science. 2011; 333(6042):558-9. DOI: 10.1126/science.333.6042.558..

Gersh BJ, Sliwa K, Mayosi BM, Yusuf S. Novel therapeutic concepts: the epidemic of cardiovascular disease in the developing world: global implications. Eur Heart J. 2010; 31(6):642-8. DOI: 10.1093/eurheartj/ehq030.

Leeder S, Raymond S, Greenberg H, Liu H, Esson K. A Race Against Time: The Challenge of Cardiovascular Disease in Developing Countries. New York, NY: Trustees of Columbia University; 2004.

Reddy KS. Cardiovascular diseases in the developing countries: dimensions, determinants, dynamics and directions for public health action. Public Health Nutr. 2002; 5:231-7. DOI: 10.1079/PHN2001298.

Kavey RE, Daniels SR, Lauer RM, Atkins DL, Hayman LL, Taubert K. American Heart Association guidelines for primary prevention of atherosclerotic cardiovascular disease beginning in childhood. Circulation. 2003; 107(11):1562-6. DOI: 10.1161/01.CIR.0000061521.15730.6E.

Ardura J BML. Hábitos de vida y prevención de la patología cardiovascular. An Esp Pediatr 2009; 54 (Supl 4): 25-31.

Sternby NH, Fernández-Britto JE, Nordet P. Pathobiological determinants of atherosclerosis in youth (PBDAY Study), 1986-96. Bull World Health Organ. 1999; 77 (3):250-7.

Agudelo-Ochoa, GM y Arteaga, A. Prevalencia del síndrome metabólico en niños y adolescentes escolarizados del área urbana de la ciudad de Medellín. Iatreia. 2008; 21:260-70.

Villarreal E, Forero Y, Poveda E, Baracaldo C, Lopez E. Cardiovascular risk markers in schoolchildren from five provinces of eastern Colombia. Biomedica. 2008; 28(1):38-49.

Gracia B, de Plata C, Méndez F, et al. Evaluation of early manifestations of chronic non transmitted diseases risk in school population in Cali - Colombia. Arch Latinoam Nutr. 2005; 55(3):267-78.

Shechter M, Issachar A, Marai I, Koren-Morag N, Freinark D, Shahar Y, Shechter A, Feinberg MS. Long-term association of brachial artery flow-mediated vasodilation and cardiovascular events in middle-aged subjects with no apparent heart disease. Int J Cardiol. 2009; 134(1):52-8. DOI: 10.1016/j.ijcard.2008.01.021.

Halcox JP, Schenke WH, Zalos G, et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation. 2002; 106:653-8. DOI: 10.1161/01.CIR.0000025404.78001.D8.

Zeiher AM. Endothelial vasodilator dysfunction: pathogenetic link to myocardial ischaemia or epiphenomenon? Lancet. 1996; 348(Suppl 1):s10-s12. DOI: http://dx.doi.org/10.1016/S0140-6736(96)98004-6.

Meigs JB, Hu FB, Rifai N, Manson JE. Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA. 2004; 291:1978-86. DOI: 10.1001/jama.291.16.1978.

Shai I, Pischon T, Hu FB, Ascherio A, Rifai N, Rimm EB. Soluble intercellular adhesion molecules, soluble vascular cell adhesion molecules, and risk of coronary heart disease. Obesity. 2006; 14:2099-106. DOI: 10.1038/oby.2006.245.

Chadderdon SM, Belcik JT, Bader L, et al. Proinflammatory endothelial activation detected by molecular imaging in obese nonhuman primates coincides with onset of insulin resistance and progressively increases with duration of insulin resistance. Circulation. 2014; 129(4):471-8. 10.1161/CIRCULATIONAHA.113.003645.

Kim F, Pham M, Maloney E, Rizzo NO, Morton GJ, Wisse BE, Kirk EA, Chait A, Schwartz MW. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler Thromb Vasc Biol. 2008; 28:1982-8. DOI: 10.1161/ATVBAHA.108.169722.

Vlahos AP, Naka KK, Bechlioulis A, Theoharis P, Vakalis K, Moutzouri E, et al. Endothelial dysfunction, but not structural atherosclerosis, is evident early in children with heterozygous familial hypercholesterolemia. Pediatr Cardiol. 2014; 35(1):63-70. DOI: 10.1007/s00246-013-0742-0.

Huang PL, Huang Z, Mashimo H, et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 1995; 377:239-42. DOI: 10.1038/377239a0.

Campuzano R, Moya JL, García-Lledó A, Tomas JP, Ruiz S, Megías A, et al. Endothelial dysfunction, intima-media thickness and coronary reserve in relation to risk factors and Framingham score in patients without clinical atherosclerosis. J Hypertens. 2006; 24(8):1581-8. DOI: 10.1097/01.hjh.0000239294.17636.27.

Stroes ES, van Faasen EE, Yo M, et al. Folic acid reverts dysfunction of endothelial nitric oxide synthase. Circ Res. 2000; 86:1129-34. DOI: 10.1161/01.RES.86.11.1129.

Martin H, Lindblad B, Norman M. Endothelial function in newborn infants is related to folate levels and birth weight. Pediatrics. 2007; 119:1152-8. DOI: 10.1542/peds.2006-2706.

Leeson CP, Whincup PH, Cook DG, et al. Flow-mediated dilation in 9- to 11-year-old children: the influence of intrauterine and childhood factors. Circulation. 1997; 96:2233. DOI: 10.1161/01.CIR.96.7.2233.

Celermajer DS, Sorenson KE, Gooch VM, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992; 340:1111-5. DOI: 10.1016/0140-6736(92)93147-F .

Martin H, Gazelius B, Norman M. Impaired acetylcholine induced vascular relaxation in low birth weight infants: implications for adult hypertension? Pediatr Res. 2000; 47:457-62.

Goh KL, Shore AC, Quinn M, Tooke JE. Impaired microvascular vasodilatory function in 3-month-old infants of low birth weight. Diabetes Care. 2001; 24:1102-7. DOI: 10.2337/diacare.24.6.1102.

Barker DJ, Osmond C, Forsen TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med. 2005; 353: 1802-9. DOI: 10.1056/NEJMoa044160.

Singhal A, Cole TJ, Fewtrell M, Kennedy K, Stephenson T, Elias-Jones A, Lucas A. Promotion of faster weight gain in infants born small for gestational age: is there an adverse effect on later blood pressure? Circulation. 2007; 115: 213-20. DOI: 10.1161/CIRCULATIONAHA.106.617811.

Lewandowski AJ, Davis EF, Yu G, et al. Elevated blood pressure in preterm-born offspring associates with a distinct antiangiogenic state and microvascular abnormalities in adult life. Hypertension. 2015; 65(3):607-14. DOI: 10.1161/HYPERTENSIONAHA.114.04662.

Antonios TF, Raghuraman RP, D’Souza R, Nathan P, Wang D, Manyonda IT. Capillary remodeling in infants born to hypertensive pregnancy: pilot study. Am J Hypertens. 2012; 25(8):848-53. DOI: 10.1038/ajh.2012.51.

Roseboom TJ, van der Meulen JH, Ravelli AC, Osmond C, Barker DJ, Bleker OP. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol. 2001; 185:93-8. DOI: .1016/S0303-7207(01)00721-3.

Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, Sachdev HS. Maternal and child undernutrition: consequences for adult health and human capital. Lancet. 2008; 371: 340-57. DOI: 10.1016/S0140-6736(07)61692-4.

Wang PX, Wang JJ, Lei YX, Xiao L, Luo ZC. Impact of fetal and infant exposure to the Chinese Great Famine on the risk of hypertension in adulthood. PLoS One. 2012; 7(11):e49720. DOI: 10.1371/journal.pone.0049720.

Chen H, Nembhard WN, Stockwell HG. Sex -specific effects of fetal exposure to the 1959-1961 Chinese famine on risk of adult hypertension. Matern Child Health J. 2014; 18(3):527-33. DOI: 10.1097/HJH.0b013e328345d969.

Fan L, Lindsley SR, Comstock SM, et al. Maternal high-fat diet impacts endothelial function in nonhuman primate offspring. Int J Obes. 2013; 37(2):254-62. DOI: 10.1038/ijo.2012.42.

Dong M, Giles WH, Felitti VJ, et al. Insights into causal pathways for ischemic heart disease: Adverse Childhood Experiences Study. Circulation. 2004; 110; 1761-6. DOI: 10.1161/01.CIR.0000143074.54995.7F.

Pretty C, O’Leary DD, Cairney J, Wade TJ. Adverse childhood experiences and the cardiovascular health of children: a cross-sectional study. BMC Pediatr. 2013; 17:208. DOI: 10.1186/1471-2431-13-208.

Su S, Wang X, Pollock JS, et al. Adverse childhood experiences and blood pressure trajectories from childhood to young adulthood: the georgia stress and heart study. Circulation. 2015; 131(19):1674-81. DOI: 10.1161/CIRCULATIONAHA.114.013104.

Pesonen AK, Räikkönen K, Feldt K, et al. Childhood separation experience predicts HPA axis hormonal responses in late adulthood: a natural experiment of World War II. Psychoneuroendocrinology. 2010; 35:758-67. DOI: 10.1016/j.psyneuen.2009.10.017.

Pervanidou P, Chrousos GP. Posttraumatic stress disorder in children and adolescents: neuroendocrine perspectives. Sci Signal. 2012; 5:6. DOI: 10.1126/scisignal.2003327.

Slopen N, Loucks EB, Appleton AA, Kawachi I, Kubzansky LD, et al. Early origins of inflammation: An examination of prenatal and childhood social adversity in a prospective cohort study. Psychoneuroendocrinology. 2015; 51:403-13. DOI: 10.1016/j.psyneuen.2014.10.016.

Rodríguez-Pascual F, Busnadiego O, Lagares D, Lamas S. Role of endothelin in the cardiovascular system. Pharmacol Res. 2011; 63:463-72. DOI: 10.1016/j.phrs.2011.01.014.

Su S, Wang X, Kapuku GK, et al. Adverse childhood experiences are associated with detrimental hemodynamics and elevated circulating endothelin-1 in adolescents and young adults. Hypertension. 2014; 64(1):201-7. DOI: 10.1161/HYPERTENSIONAHA.113.02755. .

Jensen CB, Martin-Gronert MS, Storgaard H, Madsbad S, Vaag A, Ozanne SE. Altered PI3-kinase/Akt signalling in skeletal muscle of young men with low birth weight. PLoS ONE 2008; 3:e3738. DOI: 10.1371/journal.pone.0003738.

Singhal A, Fewtrell M, Cole TJ, Lucas A. Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet. 2003; 361:1089-97.DOI: 10.1016/S0140-6736(03)12895-4.

Mayhew TM, Manwani R, Ohadike C, Wijesekara J, Baker PN. The placenta in preeclampsia and intrauterine growth restriction: studies on exchange surface areas, diffusion distances and villous membrane diffusive conductances. Placenta. 2006; 28(3):233-8. DOI: 10.1016/j.placenta.2006.02.011.

Ness RB, Sibai BM. Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Am J Obstet Gynecol. 2006; 195(1):40-9. DOI: http://dx.doi.org/10.1016/j.ajog.2005.07.049.

Regnault TR, de Vrijer B, Galan HL, Wilkening RB, Battaglia FC, Meschia G. Development and mechanisms of fetal hypoxia in severe fetal growth restriction. Placenta. 2007; 28(7):714-23. DOI: http://dx.doi.org/10.1016/j.placenta.2006.06.007.

Thureen PJ, Trembler KA, Meschia G, Makowski EL, Wilkening RB. Placental glucose transport in heat-induced fetal growth retardation. Am J Physiol. 1992; 263:R578-R585.

Paolini CL, Marconi AM, Ronzoni S, et al. Placental transport of leucine, phenylalanine, glycine, and proline in intrauterine growth-restricted pregnancies. J Clin Endocrinol Metab. 2001; 86(11):5427-32.

Rodie VA, Caslake MJ, Stewart F, et al. Fetal cord plasma lipoprotein status in uncomplicated human pregnancies and in pregnancies complicated by pre-eclampsia and intrauterine growth restriction. Atherosclerosis. 2004; 176(1):181-7. DOI: http://dx.doi.org/10.1016/j.atherosclerosis.2004.04.026.

Verkauskiene R, Beltrand J, Claris O, et al. Impact of fetal growth restriction on body composition and hormonal status at birth in infants of small and appropriate weight for gestational age. Eur J Endocrinol. 2007; 157(5):605-12. DOI: 10.1530/EJE-07-0286.

Widdowson EM, Crabb DE, Milner RD. Cellular development of some human organs before birth. Arch Dis Child. 1972; 47(254):652-5. DOI: 10.1136/adc.47.254.652.

Fernandez-Twinn DS, Ozanne SE. Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome. Physiol Behav. 2006; 88(3):234-43. DOI: 10.1016/j.physbeh.2006.05.039.

Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008; 359(1):6-73. DOI: 10.1056/NEJMra0708473.

Whincup PH, Cook DG, Adshead F. Childhood size is more strongly related than size at birth to glucose and insulin levels in 10–11-year-old children. Diabetologia. 1997; 40:319-26. DOI: 10.1007/s001250050681

Yajnik CS, Fall CHD, Vaidya U, et al. Fetal growth and glucose and insulin metabolism in four-yearold Indian children. Diabet Med. 1995; 12:330-6.

Mericq V, Ong KK, Bazaes R, et al. Longitudinal changes in insulin sensitivity and secretion from birth to age three years in small- and appropriate-for-gestational-age children. Diabetologia. 2005; 48(12):2609-14.

Kieffer EC, Tabaei BP, Carman WJ, Nolan GH, Guzman JR, Herman WH. The influence of maternal weight and glucose tolerance on infant birthweight in Latino mother-infant pairs. Am J Public Health. 2006; 96:2201-8. DOI: 10.2105/AJPH.2005.065953.

Hamilton JK, Odrobina E, Yin J, Hanley AJ, Zinman B, Retnakaran R. Maternal insulin sensitivity during pregnancy predicts infant weight gain and adiposity at 1 year of age. Obesity. 2010; 18:340-6. DOI: 10.1038/oby.2009.231.

Agnoux AM, Antignac JP, Simard G, Poupeau G, Darmaun D, Parnet P, et al. Time window-dependent effect of perinatal maternal protein restriction on insulin sensitivity and energy substrate oxidation in adult male offspring. Am J Physiol Regul Integr Comp Physiol. 2014; 307(2):R184-97. DOI: 10.1152/ajpregu.00015.2014.

Iñiguez G, Soto N, Avila A, Salazar T, Ong K, Dunger D, Mericq V. Adiponectin levels in the first two years of life in a prospective cohort: relations with weight gain, leptin levels and insulin sensitivity. J Clin Endocrinol Metab. 2004; 89(11):5500-3. DOI: http://dx.doi.org/10.1210/jc.2004-0792.

Mantzoros CS, Rifas-Shiman SL, Williams CJ, Fargnoli JL, Kelesidis T, et al. Cord blood leptin and adiponectin as predictors of adiposity in children at 3 years of age: a prospective cohort study. Pediatrics. 2009; 123:682-9. DOI: 10.1542/peds.2008-0343.

Brunner S, Schmid D, Zang K, et al. Breast milk leptin and adiponectin in relation to infant body composition up to 2 years. Pediatr Obes. 2015; 10(1):67-73. DOI: 10.1111/j.2047-6310.2014.222.x.

Inami I, Okada T, Fujita H, et al. Impact of serum adiponectin concentration on birth size and early postnatal growth. Pediatr Res. 2007;61:604-6. DOI: 10.1203/pdr.0b013e3180459f8a.

Gupta M, Zaheer, Jora R, Kaul V, Gupta R. Breast feeding and insulin levels in low birth weight neonates: a randomized study. Indian J Pediatr. 2010; 77(5):509-13. DOI: 10.1007/s12098-010-0065-6.

de Zegher F, Sebastiani G, Diaz M, Gómez-Roig MD, López-Bermejo A, Ibáñez L. Breast-feeding vs formula-feeding for infants born small-for-gestational-age: divergent effects on fat mass and on circulating IGF-I and high-molecular-weight adiponectin in late infancy. J Clin Endocrinol Metab. 2013; 98(3):1242-7. DOI: 10.1210/jc.2012-3480

Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes.Diabetes Res Clin Pract. 2014; 105(2):141-50. DOI: 10.1016/j.diabres.2014.04.006.

Thorand B, Löwel H, Schneider A, Kolb H, Meisinger C, Fröhlich M, et al. C-reactive protein as a predictor for incident diabetes mellitus among middle-aged men: results from the MONICA Augsburg cohort study, 1984-1998. Arch Intern Med. 2003; 163:93-9. DOI: 10.1001/archinte.163.1.93.

Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. New England Journal of Medicine 2002; 34(20):1557-65. DOI: 10.1056/NEJMoa021993.

Wu D-M, Chu N-F, Shen M-H, Wang S-C. Obesity, plasma high sensitivity c-reactive protein levels and insulin resistance status among school children in Taiwan. Clin Biochem 2006; 39:810-15. DOI: 10.1016/j.clinbiochem.2006.05.007.

Ford ES, Ajani UA, Mokdad AH. The metabolic syndrome and concentrations of C-reactive protein among U.S. youth. Diabetes Care. 2005; 28:878-81. DOI: 10.2337/diacare.28.4.878.

Leinonen E, Hurt-Camejo E, Wiklund O, Hulten LM, Hiukka A, Taskinen MR. Insulin resistance and adiposity correlate with acute-phase reaction and soluble cell adhesion molecules in type 2 diabetes. Atherosclerosis. 2003; 166:387-94. DOI: 10.1016/S0021-9150(02)00371-4.

Valle M, Martos R, Gascon F, Canete R, Zafra MA, Morales R. Low-grade systemic inflammation, hypoadiponectinemia and a high concentration of leptin are present in very young obese children, and correlate with metabolic syndrome. Diabet Metab. 2005; 31:55-62. DOI: 10.1016/S1262-3636(07)70167-2.

Lazarou C, Panagiotakos DB, Chrysohoou C, Andronikou C, Matalas AL. C-reactive protein levels are associated with adiposity and a high inflammatory foods index in mountainous. Cypriot children.Clin Nutr. 2010; 29(6):779-83. DOI: 10.1016/j.clnu.2010.05.001.

Juonala M, Viikari JSA, Ronnemaa T, Taittonen L, Marniemi J, Raitakari OT. Childhood C-reactive protein in predicting CRP and carotid intima media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. Arterioscler Thromb Vasc Biol. 2006; 26:1883-8. DOI: 10.1161/01.ATV.0000228818.11968.7a.

Wojakowski W, Gminski J. Soluble ICAM-1, VCAM-1 and E-selectin in children from families with high risk of atherosclerosis. Int J Mol Med. 2001; 7:181-5. DOI: 10.3892/ijmm.7.2.181.

Caballero AE, Bousquet-Santos K, Robles-Osorio L, et al. Overweight Latino children and adolescents have marked endothelial dysfunction and subclinical vascular inflammation in association with excess body fat and insulin resistance. Diabetes Care. 2008; 31:576-82. DOI: 10.2337/dc07-1540.

Gilbert D, Baylin A, Mora-Plazas M, Villamor E. Chronic inflammation is associated with overweight in Colombian school children. Nutr Metab Cardiovasc Dis. 2012; 22(3):244-51. DOI: 10.1016/j.numecd.2010.06.001.

McDade TW, Metzger MW, Chyu L, Duncan GJ, Garfield C, Adam EK. Long-term effects of birth weight and breastfeeding duration on inflammation in early adulthood. Proc Biol Sci. 2014; 281(1784):20133116. DOI: 10.1098/rspb.2013.3116.

Williams MJ, Williams SM, Poulton R. Breast feeding is related to C reactive protein concentration in adult women. J Epidemiol Community Health. 2006; 60(2):146-8. DOI: 10.1136/jech.2005.039222.

Nelson SM, Sattar N, Freeman DJ, Walker JD, Lindsay RS. Inflammation and endothelial activation is evident at birth in offspring of mothers with type 1 diabetes. Diabetes. 2007; 56:2697-704. DOI: 10.2337/db07-0662.

Kelstrup L, Clausen TD, Mathiesen ER, Hansen T, Damm P. Low-grade inflammation in young adults exposed to intrauterine hyperglycemia. Diabetes Res Clin Pract. 2012; 97(2):322-30. DOI: 10.1016/j.diabres.2012.04.023.

Lourenço BH, Cardoso MA, ACTION Study Team. C-reactive protein concentration predicts change in body mass index during childhood. PLoS One. 2014; 9(3):e90357. •DOI: 10.1371/journal.pone.0090357.

Nappo A, Iacoviello L, Fraterman A, Gonzalez-Gil EM, Hadjigeorgiou C, Marild S, et al. High-sensitivity C-reactive protein is a predictive factor of adiposity in children: results of the identification and prevention of dietary- and lifestyle-induced health effects in children and infants (IDEFICS) study. J Am Heart Assoc. 2013; 2(3):e000101. DOI: 10.1161/JAHA.113.000101.

Holz T, Thorand B, Döring A, Schneider A, Meisinger C, Koenig W. Markers of inflammation and weight change in middle-aged adults: results from the prospective MONICA/KORA S3/F3 study. Obesity. 2010; 18:2347-53. DOI: 10.1038/oby.2010.73.

Dahlgren J, Nilsson C, Jennische E, et al. Prenatal cytokine exposure results in obesity and gender-specific programming. Am J Physiol Endocrinol Metab. 2001; 281(2):E326-34.

Leibowitz KL, Moore RH, Ahima RS, Stunkard AJ, Stallings VA, Berkowitz RI, et al. Maternal obesity associated with inflammation in their children.World J Pediatr. 2012; 8(1):76-9. DOI: 10.1007/s12519-011-0292-6.

Wienecke J, Hebel K, Hegel KJ, et al. Pro-inflammatory effector Th cells transmigrate through anti-inflammatory environments into the murine fetus. Placenta. 2012; 33(1):39-46. DOI: 10.1016/j.placenta.2011.10.014.

Zaretsky MV, Alexander JM, Byrd W, Bawdon RE. Transfer of inflammatory cytokines across the placenta.Obstet Gynecol. 2004; 103(3):546-50. DOI: 10.1097/01.AOG.0000114980.40445.83.

Goyal P, Brünnert D, Ehrhardt J, Bredow M, Piccenini S, Zygmunt M. Cytokine IL-6 secretion by trophoblasts regulated via sphingosine-1-phosphate receptor 2 involving Rho/Rho-kinase and Rac1 signaling pathways. Mol Hum Reprod. 2013; 19(8):528-38. DOI: 10.1093/molehr/gat023.

Lager S, Jansson N, Olsson AL, Wennergren M, Jansson T, Powell TL. Effect of IL-6 and TNF-α on fatty acid uptake in cultured human primary trophoblast cells. Placenta. 2011; 32(2):121-7. DOI: 10.1016/j.placenta.2010.10.012.

Hanson MA, Godfrey KM. Genetics: Epigenetic mechanisms underlying type 2 diabetes mellitus. Nat Rev Endocrinol. 2015; 11(5):261-2. DOI: 10.1038/nrendo.2015.31.

Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002; 16:6-21. DOI: 10.1101/gad.947102.

Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006; 31:89-97. DOI: http://dx.doi.org/10.1016/j.tibs.2005.12.008

Yu HL, Dong S, Gao LF, Li L, Xi YD, Ma WW, et al. Global DNA methylation was changed by a maternal high-lipid, high-energy diet during gestation and lactation in male adult mice liver. Br J Nutr. 2015; 113(7):1032-9. DOI: 10.1017/S0007114515000252.

Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008; 3:97-106.

Ba Y, Yu H, Liu F, et al. Relationship of folate, vitamin B12 and methylation of insulin-like growth factor-II in maternal and cord blood. Eur J Clin Nutr. 2011; 65:480-5. DOI: 10.1038/ejcn.2010.294.

Alikhani-Koopaei R, Fouladkou F, Frey FJ, Frey BM. Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression. J Clin Invest. 2004; 114:1146-57. DOI: 10.1172/JCI200421647.

Friso S, Pizzolo F, Choi SW, et al. Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis. 2008; 199:323-7. DOI: 10.1016/j.atherosclerosis.2007.11.029.

Barak Y, Nelson MC, Ong ES, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell. 1999; 4:585-95. DOI: http://dx.doi.org/10.1016/S1097-2765(00)80209-9.

Moore KJ, Fitzgerald ML, Freeman MW. Peroxisome proliferator-activated receptors in macrophage biology: friend or foe? Curr Opin Lipidol. 2001; 12: 519-27.

Fujiki K, Kano F, Shiota K, Murata M. Expression of the peroxisome proliferator activated receptor gamma gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol. 2009; 7:38-43. DOI: 10.1186/1741-7007-7-38.

Yan MS, Matouk CC, Marsden PA. Epigenetics of the vascular endothelium. J Appl Physiol. 2010; 109(3):916-26. DOI: 10.1152/japplphysiol.00131.2010.

Postberg J, Kanders M, Forcob S, Willems R, Orth V, et al. CpG signalling, H2A.Z/H3 acetylation and microRNA-mediated deferred self-attenuation orchestrate foetal NOS3 expression. Clin Epigenetics. 2015; 7(1):9. DOI: 10.1186/s13148-014-0042-4.

Guénard F, Tchernof A, Deshaies Y, Cianflone K, Kral JG, Marceau P, et al. Methylation and expression of immune and inflammatory genes in the offspring of bariatric bypass surgery patients. J Obes. 2013; 2013:492170. DOI: 10.1155/2013/492170.

Patterson AJ, Zhang L. Hypoxia and fetal heart development. Curr Mol Med. 2010; 10(7):653-66. DOI: 10.2174/156652410792630643.

Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science. 2014; 345(6198):1255903. DOI: 10.1126/science.1255903.

Veenendaal MV, Painter RC, de Rooij SR, et al. Transgenerational effects of prenatal exposure to the 1944-45 Dutch famine. BJOG. 2013; 120(5):548-53. DOI: 10.1111/1471-0528.12136.

Descargas

Publicado

2023-01-15

Cómo citar

Ortega-Ávila, J. G. (2023). Determinantes prenatales y postnatales tempranos de enfermedades cardiovasculares en el adulto. Salutem Scientia Spiritus, 1(1), 37–47. Recuperado a partir de https://revistas.javerianacali.edu.co/index.php/salutemscientiaspiritus/article/view/659

Número

Sección

Revisión de la literatura