Relación entre la microbiota intestinal y la aparición de diferentes tipos de anemia.
Palabras clave:
Microbiota, microbioma, disbiosis, anemia, relación microbiota intestinal-anemia.Resumen
El tracto gastrointestinal alberga aproximadamente el 70 % de la microbiota del cuerpo humano, desempeñando un papel fundamental en la digestión, absorción y metabolismo de nutrientes, así como en la síntesis de micronutrientes como hierro, ácido fólico y vitamina B12. Estos procesos pueden influir en la hematopoyesis y contribuir al desarrollo de anemias, principalmente las carenciales, como la ferropénica, la megaloblástica y la perniciosa. La anemia, definida como la disminución de la concentración de hemoglobina sérica, constituye un problema de salud pública que afecta a millones de personas a nivel mundial, siendo la deficiencia de hierro su causa principal. Estudios recientes han demostrado que la microbiota intestinal está implicada en el metabolismo del hierro y de otros nutrientes involucrados en la aparición y progresión de distintos tipos de anemia. Por ello, se ha propuesto que las alteraciones en la microbiota tienen una relación bidireccional con la fisiopatología de la enfermedad y con la respuesta al tratamiento. Algunas especies probióticas, como Lactobacillus fermentum y Lactiplantibacillus plantarum 299v, han mostrado mejorar la biodisponibilidad del hierro y de otros micronutrientes esenciales. Se seleccionaron diversas fuentes bibliográficas en las bases de datos Medline, SpringerLink y ScienceDirect, incluyendo trabajos originales y revisiones relacionadas con la relación entre la microbiota intestinal y el desarrollo de anemia. La microbiota intestinal desempeña un papel importante en el desarrollo y tratamiento de ciertos tipos de anemia, por lo que la modulación de estos ecosistemas microbianos constituye un posible objetivo terapéutico para optimizar la respuesta al tratamiento.
Descargas
Referencias
1. Díaz-Rodríguez K, Pacheco-Aranibar J, Manrique-Sam C, Ita-Balta Y, Carpio-Toia AMD, López-Casaperalta, et al. Intestinal Microbiota in Children with Anemia in Southern Peru through Next-Generation Sequencing Technology. Children (Basel). 2022; 9(11):1615. DOI: 10.3390/children9111615.
2. Newhall DA, Oliver R, Lugthart S. Anaemia: A disease or symptom. Neth J Med. 2020 ;78(3):104-10.
3. Long Y, Liang F, Guo R, Zhu C, Zhao X, Wang X, et al. Gut Microbiota Signatures in Gestational Anemia. Front Cell Infect Microbiol. 2021; 25(11):549678. DOI: 10.3389/fcimb.2021.549678.
4. Maciel-Fiuza MF, Muller GC, Campos DMS, do Socorro Silva Costa P, Peruzzo J, Bonamigo RR, et al. Role of gut microbiota in infectious and inflammatory diseases. Front Microbiol. 2023; 14:1098386. DOI: 10.3389/fmicb.2023.1098386.
5. Panda S. Perturbations in the human gut microbiome with antibiotic therapy and intestinal disorders [thesis]. Barcelona (Spain): Universitat Autònoma de Barcelona; 2015. Available from: https://www.tesisenred.net/handle/10803/323094
6. Sebastián-Domingo JJ, Sánchez-Sánchez C. De la flora intestinal al microbioma. Rev Esp Enferm Dig. 2018; 110(1):51-56. doi:10.17235/reed.2017.4947/2017
7. Soriano-Lerma A, García-Burgos M, Barton W, Alférez MJM, Crespo-Pérez JV, et al. Comprehensive insight into the alterations in the gut microbiome and the intestinal barrier as a consequence of iron deficiency anaemia. Biomed J. 2024; 47(6):100701. DOI: 10.1016/j.bj.2024.100701.
8. Allen LH. ¿Qué tan común es la deficiencia de vitamina B-12?. Am J Clin Nutr. 2009; 89(2):693S-6S.
9. Green R, Allen LH, Bjorke-Monsen AL, Brito A, Gueant JL, Miller JW, et al. Deficiencia de vitamina B12. Cartillas Nat Rev Dis. 2017; 3(1):17040. DOI: 10.1038/nrdp.2017.40.
10. Oyedeji CI, Artz AS, Cohen HJ. How I treat anemia in older adults. Blood. 2024 Jan 18; 143(3):205-13. DOI: 10.1182/blood.2022017626.
11. Pfeiffer CM, Johnson CL, Jain RB, et al. Trends in blood folate and vitamin B-12 concentrations in the United States, 1988-2004. Am J Clin Nutr. 2007; 86:718-27.
12. DeLoughery TG. Iron Deficiency Anemia. Med Clin North Am. 2017; 101(2):319-332. DOI: 10.1016/j.mcna.2016.09.004.
13. Socha DS, DeSouza SI, Flagg A, Sekeres M, Rogers HJ. Severe megaloblastic anemia: Vitamin deficiency and other causes. Cleve Clin J Med. 2020; 87(3):153-164. DOI: 10.3949/ccjm.87a.19072.
14. Smith EM, Tangpricha V. Vitamin D and anemia: insights into an emerging association. Curr Opin Endocrinol Diabetes Obes. 2015; 22(6):432-8. DOI: 10.1097/MED.0000000000000199.
15. De Las Cuevas Allende R, Díaz de Entresotos L, Conde Díez S. Anaemia of chronic diseases: Pathophysiology, diagnosis and treatment. Med Clin (Barc). 2021 Mar 12; 156(5):235-42.DOI: 10.1016/j.medcli.2020.07.035.
16. Stein J, Connor S, Virgin G, Ong DE, Pereyra L. Anemia and iron deficiency in gastrointestinal and liver conditions. World J Gastroenterol. 2016; 22(35):7908-7925. DOI: 10.3748/wjg.v22.i35.7908.
17. Ghishan FK, Kiela PR. Vitamins and minerals in inflammatory bowel disease. Gastroenterol Clin North Am. 2017; 46(4):797-808. DOI: 10.1016/j.gtc.2017.08.011.
18. Das NK, Schwartz AJ, Barthel G, Inohara N, Liu Q, Sankar A., et al. Microbial metabolite signaling is required for systemic iron homeostasis. Cell Metab. 2020; 31(1):115-30. DOI: 10.1016/j.cmet.2019.10.005.
19. Guetterman HM, Huey SL, Knight R, Fox AM, Mehta S, Finkelstein JL. La vitamina B-12 y el microbioma gastrointestinal: una revisión sistemática. Adv Nutr. 2022; 13(2):530-58. DOI: 10.1093/advances/nmab123.
20. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010; 90(3):859-904. DOI: 10.1152/physrev.00045.2009.
21. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007; 104(34):13780-5. DOI: 10.1073/pnas.0706625104.
22. Ramakrishna BS. The Normal Bacterial Flora of the Human Intestine and Its Regulation. Journal of Clinical Gastroenterology. 2007; 41(Supplement 1):S2-6. DOI: 10.1097/MCG.0b013e31802fba68.
23. Francino MP. Early development of the gut microbiota and immune health. Pathogens. 2014; 3(3):769-90. DOI: 10.3390/pathogens3030769.
24. Degnan PH, Barry NA, Mok KC, Taga ME, Goodman AL. Human gut microbes use multiple transporters to distinguish vitamin B₁₂ analogs and compete in the gut. Cell Host Microbe. 2014; 15(1):47-57. DOI: 10.1016/j.chom.2013.12.007.
25. Devillard E, McIntosh FM, Duncan SH, Wallace RJ. Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. J Bacteriol. 2007; 189(6):2566-70. DOI: 10.1128/JB.01359-06.
26. Agus A, Planchais J, Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe. 2018; 23(6):716-724. DOI: 10.1016/j.chom.2018.05.003.
27. Butel MJ. Probiotics, gut microbiota and health. Med Mal Infect. 2014; 44(1):1-8. DOI: 10.1016/j.medmal.2013.10.002.
28. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444(7122):1022-3. DOI: 10.1038/4441022a.
29. Hertli S, Zimmermann P. Molecular interactions between the intestinal microbiota and the host. Mol Microbiol. 2022; 117(6):1297-1307. DOI: 10.1111/mmi.14905.
30. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006; 7(7):688-93. DOI: 10.1038/sj.embor.7400731.
31. Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology. 2014; 146(6):1449-58. DOI: 10.1053/j.gastro.2014.01.052.
32. Bäckhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe. 2012; 12(5):611-22. DOI: 10.1016/j.chom.2012.10.012.
33. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011; 473(7346):174-80. DOI: 10.1038/nature09944.
34. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015; 21(29):8787-803. DOI: 10.3748/wjg.v21.i29.8787.
35. Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003; 62(1):67-72. DOI: 10.1079/PNS2002207.
36. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008; 134(2):577-94. DOI: 10.1053/j.gastro.2007.11.059.
37. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013; 504(7480):446-50. DOI: 10.1038/nature12721
38. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001; 291(5505):881-4. DOI: 10.1126/science.291.5505.881.
39. Thomas CM, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, et al. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One. 2012; 7(2):e31951. DOI: 10.1371/journal.pone.0031951.
40. Devillard E, McIntosh FM, Paillard D, Thomas NA, Shingfield KJ, Wallace RJ. Differences between human subjects in the composition of the faecal bacterial community and faecal metabolism of linoleic acid. Microbiology (Reading). 2009; 155(Pt 2):513-520. DOI: 10.1099/mic.0.023416-0.
41. Baddini Feitoza A, Fernandes Pereira A, Ferreira da Costa N, Gonçalves Ribeiro B. Conjugated linoleic acid (CLA): effect modulation of body composition and lipid profile. Nutr Hosp. 2009; 24(4):422-8.
42. Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A. 2009; 106(34):14728-33. DOI: 10.1073/pnas.0904489106.
43. Hooper LV. Do symbiotic bacteria subvert host immunity? Nat Rev Microbiol. 2009; 7(5):367-74. DOI: 10.1038/nrmicro2114.
44. Salzman NH, Underwood MA, Bevins CL. Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol. 2007; 19(2):70-83. DOI: 10.1016/j.smim.2007.04.002.
45. Ling Z, Liu X, Cheng Y, Yan X, Wu S. Gut microbiota and aging. Crit Rev Food Sci Nutr. 2022; 62(13):3509-34. DOI: 10.1080/10408398.2020.1867054.
46. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010; 107(26):11971-5. DOI: 10.1073/pnas.1002601107.
47. Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999; 69(5):1035S-1045S. DOI: 10.1093/ajcn/69.5.1035s.
48. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012; 486(7402):222-7. DOI: 10.1038/nature11053.
49. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010; 5(5):e10667. DOI: 10.1371/journal.pone.0010667.
50. Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009; 9:123. DOI: 10.1186/1471-2180-9-123.
51. Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology. 2014; 146(6):1564-72. DOI: 10.1053/j.gastro.2014.01.058.
52. Zivkovic AM, German JB, Lebrilla CB, Mills DA. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A. 2011; 108 Suppl 1(Suppl 1):4653-8. DOI: 10.1073/pnas.1000083107.
53. Brown EM, Sadarangani M, Finlay BB. The role of the immune system in governing host-microbe interactions in the intestine. Nat Immunol. 2013; 14(7):660-7. DOI: 10.1038/ni.2611.
54. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011; 5(2):220-30. DOI: 10.1038/ismej.2010.118.
55. Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007; 1(1):56-66. DOI: 10.1038/ismej.2007.3.
56. Tanes C, Bittinger K, Gao Y, Friedman ES, Nessel L, Paladhi UR, et al. Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host Microbe. 2021; 29(3):394-07.e5. DOI: 10.1016/j.chom.2020.12.012.
57. Rajilić-Stojanović M, Biagi E, Heilig HG, Kajander K, Kekkonen RA, Tims S, et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology. 2011; 141(5):1792-801. DOI: 10.1053/j.gastro.2011.07.043.
58. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Aet al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010; 5(2):e9085. DOI: 10.1371/journal.pone.0009085.
59. Rajilić-Stojanović M, Shanahan F, Guarner F, de Vos WM. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis. 2013; 19(3):481-8. DOI: 10.1097/MIB.0b013e31827fec6d.
60. Hopkins MJ, Macfarlane GT. Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol. 2002; 51(5):448-454. DOI: 10.1099/0022-1317-51-5-448.
61. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012; 6(2):320-9. DOI: 10.1038/ismej.2011.109.
62. Kishikawa H, Nishida J, Nakano M, Hirano E, Morishita T, Ishii H. Ulcerative colitis associated with aplastic anemia. Dig Dis Sci. 2003; 48(7):1376-9. DOI: 10.1023/a:1024179730817.
63. Liu J, Wang X, Huang L, Lin X, Yin W, Chen M. Causal relationships between gut microbiome and aplastic anemia: a Mendelian randomization analysis. Hematology. 2024; 29(1):2399421. DOI: 10.1080/16078454.2024.2399421.
64. Sharma BC, Yachha SK, Mishra RN, Gupta D. Hypoplastic anemia associated with ulcerative colitis in a child. J Pediatr Gastroenterol Nutr. 1996; 23(3):326-8. DOI: 10.1097/00005176-199610000-00022.
65. D’Angelo G. Microbiota and Hematological Diseases. Int J Hematol Oncol Stem Cell Res. 2022; 16(3):164-173. DOI: 10.18502/ijhoscr.v16i3.10139.
66. D’Angelo G. Role of hepcidin in the pathophysiology and diagnosis of anemia. Blood Res. 2013; 48(1):10-5. DOI: 10.5045/br.2013.48.1.10.
67. Peyssonnaux C, Zinkernagel AS, Datta V, Lauth X, Johnson RS, Nizet V. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood. 2006; 107(9):3727-32. DOI: 10.1182/blood-2005-06-2259.
68. Lei W, Liu Z, Lai HP, Fu R. Gut microbiota and risk of iron deficiency anemia: A two-sample Mendelian randomization study. Medicine (Baltimore). 2025; 104(8):e41617. DOI: 10.1097/MD.0000000000041617.
69. Muleviciene A, D’Amico F, Turroni S, Candela M, Jankauskiene A. Iron deficiency anemia-related gut microbiota dysbiosis in infants and young children: A pilot study. Acta Microbiol Immunol Hung. 2018; 65(4):551-564. DOI: 10.1556/030.65.2018.045.
70. Rusu IG, Suharoschi R, Vodnar DC, Pop CR, Socaci SA, Vulturar R, et al. Iron Supplementation Influence on the Gut Microbiota and Probiotic Intake Effect in Iron Deficiency-A Literature-Based Review. Nutrients. 2020; 12(7):1993. DOI: 10.3390/nu12071993.
71. Vonderheid SC, Tussing-Humphreys L, Park C, Pauls H, OjiNjideka Hemphill N, LaBomascus B, et al. A Systematic Review and Meta-Analysis on the Effects of Probiotic Species on Iron Absorption and Iron Status. Nutrients. 2019; 11(12):2938. DOI: 10.3390/nu11122938.
72. Korčok DJ, Tršić-Milanović NA, Ivanović ND, Đorđević BI. Development of Probiotic Formulation for the Treatment of Iron Deficiency Anemia. Chem Pharm Bull (Tokyo). 2018; 66(4):347-352. DOI: 10.1248/cpb.c17-00634.
73. Hoppe M, Önning G, Hulthén L. Freeze-dried Lactobacillus plantarum 299v increases iron absorption in young females-Double isotope sequential single-blind studies in menstruating women. PLoS One. 2017; 12(12):e0189141. DOI: 10.1371/journal.pone.0189141.
74. Garcés V, Rodríguez-Nogales A, González A, Gálvez N, Rodríguez-Cabezas ME, García-Martin ML, et al. Bacteria-Carried Iron Oxide Nanoparticles for Treatment of Anemia. Bioconjug Chem. 2018; 29(5):1785-1791. DOI: 10.1021/acs.bioconjchem.8b00245.
75. Vilanculos SL, Svanberg U, Andlid T. Phytate degradation in composite wheat/cassava/sorghum bread: Effects of phytase-secreting yeasts and addition of yeast extracts. Food Sci Nutr. 2023; 12(1):216-226. DOI: 10.1002/fsn3.3754.
76. Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzzi D, Rossi M. Folate production by bifidobacteria as a potential probiotic property. Appl Environ Microbiol. 2007; 73(1):179-85. DOI: 10.1128/AEM.01763-06.
77. Green JM, Matthews RG. Folate Biosynthesis, Reduction, and Polyglutamylation and the Interconversion of Folate Derivatives. EcoSal Plus. 2007; 2(2). DOI: 10.1128/ecosalplus.3.6.3.6.
78. Kleerebezem M, Vaughan EE. Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol. 2009; 63:269-90. DOI: 10.1146/annurev.micro.091208.073341.
79. Zakrzewska Z, Zawartka A, Schab M, Martyniak A, Skoczeń S, Tomasik PJ, et al. Prebiotics, Probiotics, and Postbiotics in the Prevention and Treatment of Anemia. Microorganisms. 2022; 10(7):1330. DOI: 10.3390/microorganisms10071330.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2026 Ana María Carrera-Sanabria, Tatiana García-Arias, Lina María Martínez-Sánchez

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
La Revista Salutem Scientia Spiritus usa la licencia Creative Commons de Atribución – No comercial – Sin derivar: Los textos de la revista son posibles de ser descargados en versión PDF siempre que sea reconocida la autoría y el texto no tenga modificaciones de ningún tipo.